Menu

Blog

Archive for the ‘computing’ category: Page 753

Jul 18, 2016

Researcher builds technology to control drone swarms with his mind

Posted by in categories: computing, drones, neuroscience, robotics/AI, security

About 5 years ago a friend of mine at Microsoft (Mitch S.) had a vision of making a new security model around drone swarms and a form of BMI technology. Glad to see the vision come true.


Scientists have discovered how to control multiple robotic drones using the human brain, an advance that can help develop swarms of search and rescue drones that are controlled just by thought.

Continue reading “Researcher builds technology to control drone swarms with his mind” »

Jul 18, 2016

Exploring superconducting properties of 3D printed parts

Posted by in categories: 3D printing, biotech/medical, computing, transportation

3D print materials and products with superconducting properties is truly a breakthrough towards the mass production of various complex materials. I see this as a large step forward for 3D and placing things on an evolution track to even mass produce synthetic diamonds.


3D printing is revolutionizing many areas of manufacturing and science. In particular, 3D printing of metals has found novel applications in fields as diverse as customized medical implants, jet engine bearings and rapid prototyping for the automotive industry.

While many techniques can be used for 3D printing with metals, most rely on computer-controlled melting or sintering of a metal alloy powder by a laser or electron beam. The mechanical properties of parts produced by this method have been well studied, but not enough attention has focused on their electrical properties.

Continue reading “Exploring superconducting properties of 3D printed parts” »

Jul 18, 2016

Research breakthrough towards ‘practical’ quantum computing future

Posted by in categories: computing, quantum physics

This truly makes QC more practical on many fronts. First, no need for QC to reside in an “icebox” room/ environment. Second, with the recent findings on making quantum computing scalable; we now have a method in place to not make QC devices over heat as well. So, again another major step forward by Sydney and their partners in Switzerland and Germany.

http://www.itwire.com/development/73884-research-breakthroug…uture.html


A group of international researchers, including a leading research from the University of Sydney, has made a breakthrough discovery, making a conducting carbon material that they demonstrated could be used to perform quantum computing at room temperature, rather than near absolute zero (−273°C).

Continue reading “Research breakthrough towards ‘practical’ quantum computing future” »

Jul 18, 2016

‘Smart’ thread collects diagnostic data when sutured into tissue

Posted by in categories: biotech/medical, chemistry, computing, health, mobile phones, nanotechnology, wearables

Way cool! Your stitches monitors and reports your progress to your doctor/s.

BTW — In 1999, I told a guy from Diamond Intl. that the thread in our clothing would be able to do this in the next 15 to 20 years. He laughed at me; never say never.


For the first time, researchers led by Tufts University engineers have integrated nano-scale sensors, electronics and microfluidics into threads — ranging from simple cotton to sophisticated synthetics — that can be sutured through multiple layers of tissue to gather diagnostic data wirelessly in real time, according to a paper published online July 18 in Microsystems & Nanoengineering. The research suggests that the thread-based diagnostic platform could be an effective substrate for a new generation of implantable diagnostic devices and smart wearable systems.

Continue reading “‘Smart’ thread collects diagnostic data when sutured into tissue” »

Jul 18, 2016

Quantum Computing With Mothballs: Scientists Find A Way To Stabilize Electron Spins At Room Temperature

Posted by in categories: computing, quantum physics

A team of researchers has overcome a key challenge — how to build a quantum computer that is capable of functioning at room temperature.

Read more

Jul 18, 2016

Can we find a quantum-resistant algorithm before it’s too late?

Posted by in categories: computing, information science, internet, quantum physics, security

The warning from QuintessenceLabs’ CTO John Leisoboer is stark. “When sufficiently powerful quantum computers become generally available,” he says, “it’s guaranteed to break all existing cryptographic systems that we know of.”

In other words, he adds, “Everything that we’re doing today will be broken.”

It’s a sentiment echoed by Google’s Chrome security software engineer Matt Braithwaite who wrote in a blog post earlier this month that “a hypothetical, future quantum computer would be able to retrospectively decrypt any internet communication that was recorded today”.

Continue reading “Can we find a quantum-resistant algorithm before it’s too late?” »

Jul 17, 2016

Primitive Quantum Computers Are Already Outperforming Current Machines

Posted by in categories: computing, information science, particle physics, quantum physics

https://youtube.com/watch?v=jg8iCnQTLfM

A team has used simple quantum processors to run “quantum walk” algorithms, showing that even primitive quantum computers can outperform the classical variety in certain scenarios—and suggesting that the age of quantum computing may be closer than we imagined.

By now, most readers of Futurism are probably pretty well acquainted with the concept (and fantastic promise) of quantum computing.

Continue reading “Primitive Quantum Computers Are Already Outperforming Current Machines” »

Jul 16, 2016

Atheist Presidential Candidate: Religion is Literally Killing Us

Posted by in categories: biotech/medical, computing, geopolitics, life extension, terrorism

https://youtube.com/watch?v=VlGADx1s1zQ

It’s not just religious terrorism that is killing people. A religious anti-science culture—which most of us live amongst—also cuts short everyone’s lives. People simply don’t care much about longevity if they believe in an afterlife.


All around the world, religious terror is striking and threatening us. Whether in France, Istanbul, London, or the USA, the threat is now constant. We can fight it all we want. We can send out our troops; we can chip refugees; we can try to monitor terrorist’s every move. We can even improve trauma medicine to deal with extreme violence they bring us. But none of this solves the underlying issue: Abrahamic religions like Christianity and Islam are fundamentally violent philosophies with violent Gods. Sam Harris, Richard Dawkins, Christopher Hitchens and others have all reiterated essentially the same thing.

Continue reading “Atheist Presidential Candidate: Religion is Literally Killing Us” »

Jul 15, 2016

Visualizing Data: Illustrating Complex Quantum Matter Principles

Posted by in categories: computing, quantum physics

By Dr. Robert Green, postdoctoral fellow, Quantum Matter Institute

In the field of quantum matter research, we seek to uncover materials with properties that may find applications in new technologies. My team and I study the properties of various materials at an atomic level to find innovative ways that they can be used to compose the next generation of computer chips. Our research results in large amounts of experimental data. One of the toughest challenges is to analyze and present the data in a meaningful way, for not only our understanding of their underlying complex, quantum principles, but also for wider audiences, including fellow researchers in the field.

One of our key research projects aims to uncover properties in materials that might be used to make smaller, more energy efficient computer chips — five to 10 years from now. In accordance with Moore’s Law, the number of transistors and overall processing power within a chip has doubled every two years for over four decades. But as chips have become more and more powerful, technological demands also continue to expand and the devices that use these chips are also becoming more portable. As a result, conventional practices of making chips are straining the laws of physics to incorporate more transistors within a shrinking area.

Continue reading “Visualizing Data: Illustrating Complex Quantum Matter Principles” »

Jul 15, 2016

Single-photon avalanche diodes and advanced digital circuits for improved biomedical imaging

Posted by in categories: biotech/medical, computing, health

High-performance detectors that are compatible with mainstream semiconductor device fabrication deliver high speed, ultra-sensitivity, and good timing resolution.

Recent advances in biomedical imaging include the enhancement of image contrast, 3D sectioning capability, and compatibility with specialized imaging modes such as fluorescence lifetime imaging (FLIM).1–3 Compared with other imaging methods, FLIM offers the highest image contrast because it measures the lifetime of the fluorescence, rather than just its intensity or wavelength characteristics. The contrasting fluorescence lifetime attributes can then enable the observer to discriminate between regions, such as identifying healthy and diseased tissue for cancer detection. In conventional FLIM, a discrete single-photon detector, typically based on photomultiplier tube (PMT) technology, enables the acquisition of a single focal spot.4 This focal spot is then raster-scanned across the field of view to form an image. This approach, however, requires sequential scanning—pixel by pixel—and thus results in a slow image acquisition rate.

Continue reading “Single-photon avalanche diodes and advanced digital circuits for improved biomedical imaging” »