Menu

Blog

Archive for the ‘computing’ category: Page 74

May 22, 2024

The price of computer storage has fallen exponentially since the 1950s

Posted by in category: computing

The price of computer storage since the 1950s.

From:


This chart shows the dramatic fall in the price of computer storage between 1956 and 2023. It relies on the data carefully collected by the computer scientist John C. McCallum.

Continue reading “The price of computer storage has fallen exponentially since the 1950s” »

May 22, 2024

Streamlined microcomb design provides control with the flip of a switch

Posted by in categories: computing, electronics

Light measurement devices called optical frequency combs have revolutionized metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics.

May 22, 2024

The tunable coupling of two distant superconducting spin qubits

Posted by in categories: computing, quantum physics

Quantum computers, computing devices that leverage the principles of quantum mechanics, could outperform classical computing on some complex optimization and processing tasks. In quantum computers, classical units of information (bits), which can either have a value of 1 or 0, are substituted by quantum bits or qubits, which can be in a mixture of both 0 and 1 simultaneously.

May 22, 2024

Unlocking the Quantum Code: International Team Cracks a Long-Standing Physics Problem

Posted by in categories: computing, quantum physics

“In quantum many-body theory, we are often faced with the situation that we can perform calculations using a simple approximate interaction, but realistic high-fidelity interactions cause severe computational problems,” says Dean Lee, Professor of Physics from the Facility for Rare Istope Beams and Department of Physics and Astronomy (FRIB) at Michigan State University and head of the Department of Theoretical Nuclear Sciences.

Practical Applications and Future Prospects

Wavefunction matching solves this problem by removing the short-distance part of the high-fidelity interaction and replacing it with the short-distance part of an easily calculable interaction. This transformation is done in a way that preserves all the important properties of the original realistic interaction. Since the new wavefunctions are similar to those of the easily computable interaction, the researchers can now perform calculations with the easily computable interaction and apply a standard procedure for handling small corrections – called perturbation theory.

May 22, 2024

For the first time, scientists make light travel forward and backward in time simultaneously

Posted by in categories: computing, quantum physics

Scientists have, for the first time ever, made light appear to move simultaneously forward and backward in time.

According to a LiveScience report, the new approach, developed by a global team of scientists, may contribute to the development of novel quantum computing methods and advance our understanding of quantum gravity.

May 22, 2024

Researchers use microstructural modeling to optimize electrode materials for batteries

Posted by in categories: computing, materials

Which factors determine how quickly a battery can be charged? This and other questions are studied by researchers of Karlsruhe Institute of Technology (KIT) with the help of computer-based simulations.

May 21, 2024

Functionalization of Polymer Networks for Diverse Applications

Posted by in categories: chemistry, computing, engineering, internet

While silicon has been the go-to material for sensor applications, could polymer be used as a suitable substitute since silicon has always lacked flexibility to be used in specific applications? This is what a recent grant from the National Science Foundation hopes to address, as Dr. Elsa Reichmanis of Lehigh University was recently awarded $550,000 to investigate how polymers could potentially be used as semiconductors for sensor applications, including Internet of Things, healthcare, and environmental applications.

Illustration of an organic electrochemical transistor that could be developed as a result of this research. (Credit: Illustration by by Ella Marushchenko; Courtesy of Reichmanis Research Group)

“We’ll be creating the polymers that could be the building blocks of future sensors,” said Dr. Reichmanis, who is an Anderson Chair in Chemical Engineering in the Department of Chemical and Biomolecular Engineering at Lehigh University. “The systems we’re looking at have the ability to interact with ions and transport ionic charges, and in the right environment, conduct electronic charges.”

May 21, 2024

New crystal production method could enhance quantum computers and electronics

Posted by in categories: computing, quantum physics

In a study published in Nature Materials, scientists from the University of California, Irvine describe a new method to make very thin crystals of the element bismuth—a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

May 21, 2024

FDA approves Neuralink chip for second patient | NewsNation Now

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

The FDA has allowed billionaire Elon Musk’s Neuralink to implant its brain chip in a second person after it proposed a fix for a problem that occurred in its first patient. Correspondent Brooke Shafer joins \.

May 21, 2024

Quantum circuit synthesis with diffusion models

Posted by in categories: computing, quantum physics

Achieving the promised advantages of quantum computing relies on translating quantum operations into physical realizations. Fürrutter and colleagues use diffusion models to create quantum circuits that are based on user specifications and tailored to experimental constraints.

Page 74 of 863First7172737475767778Last