Menu

Blog

Archive for the ‘computing’ category: Page 227

Mar 29, 2023

Synthetic Telepathy: The Revolutionary Technology Redefining Communication

Posted by in categories: computing, neuroscience

In my latest interview, I answer some questions on the fascinating topic of synthetic telepathy. Recently, the concept of synthetic telepathy has gained increasing attention from both the scientific community and the general public. The ability to communicate with others using only our thoughts may sound like something straight out of science fiction, but recent advancements in neuroscience and technology have brought us closer to making this a reality.

#SyntheticTelepathy #neurotechnology #braincomputerinterface #BCI #cybernetics #brainhacking #mindcontrol #nanocybernetics


In recent years, the concept of synthetic telepathy has gained increasing attention from both the scientific community and the general public. The ability to communicate with others using only our thoughts may sound like something straight out of science fiction, but recent advancements in neuroscience and technology have brought us closer to making this a reality. Join us for an exclusive interview with futurist and evolutionary cyberneticist Alex M. Vikoulov, as he shares his expertise on the fascinating topic of synthetic telepathy. Speaking with news reporter Blanca Elena Reyes, Vikoulov will delve into the workings of this cutting-edge technology and discuss its potential applications for the future.

Continue reading “Synthetic Telepathy: The Revolutionary Technology Redefining Communication” »

Mar 29, 2023

Immortality is attainable by 2030: Google scientist

Posted by in categories: bioengineering, computing, Elon Musk, genetics, life extension, neuroscience, Ray Kurzweil

Do you really want to live forever? Futurist Ray Kurzweil has predicted that humans will achieve immortality in just seven years. Genetic engineering company touts ‘Jurassic Park’-like plan to ‘de-extinct’ dodo bird Elon Musk ‘comfortable’ putting Neuralink chip into one of his kids.

Read more ❯.

Mar 29, 2023

Direct observation of a superconducting vortex diode Communications

Posted by in category: computing

A nonreciprocal critical current is known as the superconducting diode effect (SDE). Here, the authors use SQUID-on-tip to study SDE in a EuS/Nb bilayer and find that the stray field from magnetized EuS creates screening currents in the Nb, which lead to SDE by affecting vortex flow dynamics.

Mar 29, 2023

A robust quantum memory that stores information in a trapped-ion quantum network

Posted by in categories: computing, particle physics, quantum physics, space

Researchers at University of Oxford have recently created a quantum memory within a trapped-ion quantum network node. Their unique memory design, introduced in a paper in Physical Review Letters, has been found to be extremely robust, meaning that it could store information for long periods of time despite ongoing network activity.

“We are building a network of quantum computers, which use trapped ions to store and process quantum information,” Peter Drmota, one of the researchers who carried out the study, told Phys.org. “To connect quantum processing devices, we use emitted from a single atomic ion and utilize between this ion and the photons.”

Trapped ions, charged atomic particles that are confined in space using , are a commonly used platform for realizing quantum computations. Photons (i.e., the particles of light), on the other hand, are generally used to transmit quantum information between distant nodes. Drmota and his colleagues have been exploring the possibility of combining trapped ions with photons, to create more powerful quantum technologies.

Mar 29, 2023

Machines on Genes through the Computational Microscope

Posted by in categories: biotech/medical, computing, nanotechnology

Macromolecular machines acting on genes are at the core of life’s fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of “machines on genes”, focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications.

Mar 29, 2023

Why black holes unlock the quantum majesty of the Universe

Posted by in categories: computing, cosmology, mathematics, particle physics, quantum physics

The story of modern physics has been one of reductionism. We do not need a vast encyclopedia to understand the inner workings of Nature. Rather, we can describe a near-limitless range of natural phenomena, from the interior of a proton to the creation of galaxies, with apparently unreasonable efficiency using the language of mathematics. In the words of theoretical physicist Eugene Wigner, ‘The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it.’

The mathematics of the twentieth century described a Universe populated by a limited number of different types of fundamental particles interacting with each other in an arena known as spacetime according to a collection of rules that can be written down on the back of an envelope. If the Universe was designed, it seemed, the designer was a mathematician.

Today, the study of black holes appears to be edging us in a new direction, towards a language more often used by quantum computer scientists. The language of information. Space and time may be emergent entities that do not exist in the deepest description of Nature. Instead, they are synthesized out of entangled quantum bits of information in a way that resembles a cleverly constructed computer code. If the Universe is designed, it seems, the designer is a programmer.

Mar 28, 2023

Neurotech’s Battles Impact Our Brains’ Future

Posted by in categories: biotech/medical, computing, cyborgs, neuroscience, transhumanism

Nita Farahany, professor of law and philosophy at Duke University, has written a new book, The Battle for Your Brain: Defending the Right to Think Freely in the Age of Neurotechnology (Macmillan), which explores how our lives may be impacted by the use of brain-computer interfaces and neural monitoring devices.

Farahany argues that the development and use of neurotech presents a challenge to our current understanding of human rights. Devices designed to measure, record, and influence our mental processes—used by us or on us—may infringe on our rights to mental privacy, freedom of thought, and mental self-determination. She calls this collection of freedoms the right to cognitive liberty. IEEE Spectrum spoke with Farahany recently about the future and present of neurotech and how to weigh its promises—enhanced capabilities, for instance, including bionics and prosthetics and even a third arm —against its potential to interfere with people’s mental sovereignty.

portrait of a smiling woman on a white background
Author, Nita FarahanyMerritt Chesson.

Mar 28, 2023

Quantum Computing Stocks Offer Life-Changing Wealth Potential for Long-Term Investors

Posted by in categories: computing, quantum physics

Editor’s note: “Quantum Computing Stocks Offer Life-Changing Wealth Potential for Long-Term Investors” was previously published in January 2023. It has since been updated to include the most relevant information available.

As a long-term investor during periods of market volatility like we’re seeing today, there’s one thing I always do.

Mar 27, 2023

Scientists build ‘baby’ wormhole as sci-fi moves closer to fact

Posted by in categories: computing, cosmology, quantum physics, space travel

Year 2022 😗


WASHINGTON, Nov 30 (Reuters) — In science fiction — think films and TV like “Interstellar” and “Star Trek” — wormholes in the cosmos serve as portals through space and time for spacecraft to traverse unimaginable distances with ease. If only it were that simple.

Scientists have long pursued a deeper understanding of wormholes and now appear to be making progress. Researchers announced on Wednesday that they forged two miniscule simulated black holes — those extraordinarily dense celestial objects with gravity so powerful that not even light can escape — in a quantum computer and transmitted a message between them through what amounted to a tunnel in space-time.

Continue reading “Scientists build ‘baby’ wormhole as sci-fi moves closer to fact” »

Mar 27, 2023

Advances in brain modeling open a path to digital twin approaches for brain medicine

Posted by in categories: biotech/medical, computing, neuroscience

In the current edition of The Lancet Neurology, researchers of the Human Brain Project (HBP) present the novel clinical uses of advanced brain modeling methods. Computational brain modeling techniques that integrate the measured data of a patient have been developed by researchers at AMU Marseille as part of the HBP. The models can be used as predictive tools to virtually test clinical hypotheses and strategies.

To create personalized models, the researchers use a called The Virtual Brain (TVB), which HBP scientist Viktor Jirsa has developed together with collaborators. For each patient, the computational models are created from data of the individually measured anatomy, structural connectivity and brain dynamics.

The approach has been first applied in epilepsy, and a major clinical trial is currently ongoing. The TVB technology enables clinicians to simulate the spread of abnormal activity during in a patient’s brain, helping them to better identify the target areas. In January, the team had presented the detailed methodology of the epilepsy work on the cover of Science Translational Medicine.