Menu

Blog

Archive for the ‘computing’ category: Page 136

Jan 21, 2024

TSMC 2nm Update: Two Fabs in Construction, One Awaiting Government Approval

Posted by in categories: computing, finance, government

When Taiwan Semiconductor Manufacturing Co. (TSMC) is prepping to roll out an all-new process technology, it usually builds a new fab to meet demand of its alpha customers and then either adds capacity by upgrading existing fabs or building another facility. With N2 (2nm-class), the company seems to be taking a slightly different approach as it is already constructing two N2-capable fabs and is awaiting for a government approval for the third one.

We are also preparing our N2 volume production starting in 2025,” said Mark Liu, TSMC’s outgoing chairman, at the company’s earnings call with financial analysts and investors. “We plan to build multiple fabs or multiple phases of 2nm technologies in both Hsinchu and Kaohsiung science parks to support the strong structural demand from our customers. […] “In the Taichung Science Park, the government approval process is ongoing and is also on track.”

Continue reading “TSMC 2nm Update: Two Fabs in Construction, One Awaiting Government Approval” »

Jan 21, 2024

Scientists create qubits using precision tools of nanotechnology

Posted by in categories: computing, nanotechnology, quantum physics

Silicon carbide is becoming a major player on the quantum scene. Widely used in specialized electronics goods such as LEDs and electric vehicles, silicon carbide boasts versatility, wide commercial availability, and growing use in high-power electronics, making it an attractive material for quantum information science, whose impact is expected to be profound.

Drawing on physics at the atomic scale, technologies such as quantum computers, networks, and sensors will likely revolutionize areas as varied as communication, drug development, and logistics in the coming decades.

Now, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, DOE’s Sandia National Laboratories, and partner institutions have conducted a comprehensive study on the creation of qubits—the fundamental units of quantum information processing—in silicon carbide.

Jan 21, 2024

Quantum physicist uses graphene ribbons to build nanoscale power plants

Posted by in categories: computing, encryption, nanotechnology, quantum physics

When Mickael Perrin started out on his scientific career 12 years ago, he had no way of knowing he was conducting research in an area that would be attracting wide public interest only a few years later: Quantum electronics. “At the time, physicists were just starting to talk about the potential of quantum technologies and quantum computers,” he recalls.

“Today there are dozens of start-ups in this area, and governments and companies are investing billions in developing the technology further. We are now seeing the first applications in computer science, cryptography, communications and sensors.” Perrin’s research is opening up another field of application: Electricity production using with almost zero energy loss. To achieve this, the 36-year-old scientist combines two usually separate disciplines of physics: thermodynamics and quantum mechanics.

In the past year, the quality of Perrin’s research and its potential for future applications has brought him two awards. He received not only one of the ERC Starting Grants that are so highly sought-after by young researchers, but also an Eccellenza Professorial Fellowship of the Swiss National Science Foundation (SNS)F. He now leads a research group of nine at Empa as well as being an Assistant Professor of Quantum Electronics at ETH Zurich.

Jan 20, 2024

Ultimate_computing_Biomolecular_consciou-4.pdf

Posted by in categories: computing, nanotechnology, neuroscience

Ultimate computing and biomolecular consciousness and nanotechnology.


Shared with Dropbox.

Jan 20, 2024

30TB hard drives are nearly here — Seagate’s Mozaic 3+ HAMR platform to provide the next jump in HDD capacities

Posted by in category: computing

Seagate plans to ship HAMR HDDs for cloud customers in Q1 2024.

Jan 20, 2024

Aliens Use Black Holes as Quantum Computers?

Posted by in categories: alien life, computing, quantum physics

In a recent study, a team of researchers at Max Planck Institute for Physics proposed that advanced extraterrestrial civilizations may be using black holes as quantum computers. No matter how advanced a civilization may be, we are all bound by the laws of quantum physics and gravity. So, if aliens are indeed out there, they could be using the geometry of spacetime around a black hole which behaves like a quantum computer. And, as if that weren’t enough, quantum computing is also immune to decryption, making it the perfect tool for secure communication. Roger Penrose, famously proposed that it is possible to extract limitless energy from a black hole by tapping into its Ergosphere. This is a region just outside the event horizon, where matter falling into the black hole forms a disk that spins at nearly the speed of light and emits massive amounts of radiation. Several researchers now suggest that this may be the ultimate power source for advanced civilizations. Subscribe to Science Time: https://www.youtube.com/sciencetime24 #science #shorts #space

Jan 20, 2024

TSMC tandem builds exotic new MRAM-based memory with radically lower latency and power consumption

Posted by in categories: computing, life extension

Data is written to the memory cell by changing the magnetization in the free layer (which acts as the ‘storage’ layer in the MRAM bit cell) by passing a current through the heavy metal layer, which generates a spin current and injects it into the adjacent magnetic layer, switching its orientation and thus changing its state. Reading data involves assessing the magnetoresistance of the MTJ by directing a current through the junction. The main difference between STT-and SOT-MRAM resides in the current injection geometry used for the write process, and apparently, the SOT method ensures lower power consumption and device longevity.

While SOT-MRAM offers lower standby power than SRAM, it needs high currents for write operations, so its dynamic power consumption is still quite high. Furthermore, SOT-SRAM cells are still larger than SRAM cells, and they are harder to make. As a result, while the SOT-SRAM technology looks promising, it is unlikely that it will replace SRAM any time soon. Yet, for in-memory computing applications, SOT-MRAM could make a lot of sense, if not now, but when TSMC learns how to make SOT-MRAM cost-efficiently.

Jan 20, 2024

DNA becomes our ‘hands’ to construct advanced polyhedral nanoparticles

Posted by in categories: biotech/medical, computing, nanotechnology

In a paper published in Science Jan. 18, scientists Chad Mirkin and Sharon Glotzer and their teams at Northwestern University and University of Michigan, respectively, present findings in nanotechnology that could impact the way advanced materials are made.

The paper describes a significant leap forward in assembling polyhedral . The researchers introduce and demonstrate the power of a novel synthetic strategy that expands possibilities in metamaterial design. These are the unusual materials that underpin “invisibility cloaks” and ultrahigh-speed optical computing systems.

“We manipulate macroscale materials in using our hands,” said Mirkin, the George B. Rathmann Professor of Chemistry at the Weinberg College of Arts and Sciences.

Jan 20, 2024

Revealing the hidden precision of inhibitory circuits

Posted by in categories: computing, neuroscience

A new study by Petr Znamenskiy, Tom Mrsic-Flogel, and colleagues present findings that overturn a decade-long idea that inhibitory neurons provide blanket normalising inhibition, showing that for PV+ inhibitory neurons this is not the case.


By April Cashin-Garbutt

Just like computers are characterised by their hardware, neural circuits in the brain are defined by their wiring. The synaptic organisation determines the function of neural circuits. While the connections of excitatory and inhibitory neurons were previously characterised, a new study has revealed the hidden precision of the synaptic strength of inhibitory circuits in the neocortex.

“People often think of excitatory neurons as doing the bulk of the interesting computations in the brain, whereas inhibitory neurons are thought to coordinate the activity of excitatory cells. We know from previous research that the connectivity of excitatory cells is very specific, whereas inhibitory neurons were thought to have very broad and non-specific connections,” explained Petr Znamenskiy, Group Leader at the Francis Crick Institute and former postdoctoral researcher in the Mrsic-Flogel Lab at the Sainsbury Wellcome Centre.

Continue reading “Revealing the hidden precision of inhibitory circuits” »

Jan 19, 2024

Neuro organoid intelligence and bio computers an opportunity for Man to invent himself out of existence

Posted by in category: computing

Shared with Dropbox.