Menu

Blog

Archive for the ‘chemistry’ category: Page 35

May 17, 2024

Scientists develop new geochemical ‘fingerprint’ to trace contaminants in fertilizer

Posted by in categories: chemistry, food

An international team of scientists has uncovered toxic metals in mineral phosphate fertilizers worldwide by using a new tool to identify the spread and impact of such contaminants on soil, water resources, and food supply.

May 17, 2024

Scientists Find a Surprising Way to Transform A and B Blood Types Into Universal Blood

Posted by in categories: biotech/medical, chemistry, finance

Blood transfusions save lives. In the US alone, people receive around 10 million units each year. But blood banks are always short in supply—especially when it comes to the “universal donor” type O.

Surprisingly, the gut microbiome may hold a solution for boosting universal blood supplies by chemically converting other blood types into the universal O.

Infusing the wrong blood type—say, type A to type B—triggers deadly immune reactions. Type O blood, however, is compatible with nearly everyone. It’s in especially high demand following hurricanes, earthquakes, wildfires, and other crises because doctors have to rapidly treat as many people as possible.

May 17, 2024

Rubber-like Stretchable Energy Storage Device Fabricated with Laser Precision

Posted by in categories: chemistry, energy, engineering, wearables

Scientists use laser ablation technology to develop a deformable micro-supercapacitor. Professor Jin Kon Kim and Dr. Keon-Woo Kim from the Department of Chemical Engineering at Pohang University of Science and Technology (POSTECH), in collaboration with Dr. Chanwoo Yang and Researcher Seong Ju Park from the Korea Institute of Industrial Technology (KITECH), have achieved a significant breakthrough in developing a small-scale energy storage device capable of stretching, twisting, folding, and wrinkling. Their research has been published in the electronic engineering journal, npj Flexible Electronics.

The advent of wearable technology has brought with it a pressing need for energy storage solutions that can keep pace with the flexibility and stretchability of soft electronic devices.

Micro supercapacitors (MSCs) have emerged as a promising candidate for deformable energy storage, due to high-power density, rapid charging, and long cycle life.

May 17, 2024

20-Year-Old Molecular Prediction Comes True — Chemists Have Finally Succeeded in Synthesizing an Unusual and Elusive Molecule

Posted by in categories: chemistry, particle physics

The first and the best-known metallocene is ‘ferrocene’, which contains a single iron atom. Sandwich complexes are now standard topics in inorganic chemistry textbooks, and the bonding and electronic structure of metallocenes are covered in undergraduate chemistry courses. These sandwich molecules are also significant in industry, where they serve as catalysts and are utilized in the creation of unique metallopolymers.

Nobody knows exactly how many sandwich molecules there are today, but the number is certainly in the thousands. And they all have one thing in common: a single metal atom located between two flat rings of carbon atoms. At least that was what was thought up until 2004, when a research group from the University of Seville made a startling discovery.

The Spanish research team succeeded in synthesizing a sandwich molecule that contained not one but two metal atoms. For a long time, this ‘dimetallocene’ containing two zinc atoms remained the only example of its kind until a group in the UK succeeded last year in synthesizing a very similar molecule that contained two beryllium atoms. But now, Inga Bischoff, a doctoral student in Dr. André Schäfer’s research team at Saarland University, has taken things one big step further. She has managed to synthesize in the laboratory the world’s first ‘heterobimetallic’ sandwich complex – a dimetallocene that contains two different metal atoms.

May 16, 2024

Scientists demonstrate the survival of quantum coherence in a chemical reaction involving ultracold molecules

Posted by in categories: chemistry, particle physics, quantum physics

If you zoom in on a chemical reaction to the quantum level, you’ll notice that particles behave like waves that can ripple and collide. Scientists have long sought to understand quantum coherence, the ability of particles to maintain phase relationships and exist in multiple states simultaneously; this is akin to all parts of a wave being synchronized. It has been an open question whether quantum coherence can persist through a chemical reaction where bonds dynamically break and form.

May 16, 2024

Wavefunction matching for solving quantum many-body problems

Posted by in categories: chemistry, particle physics, quantum physics

Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur. This problem has now been solved by an international team of researchers from Germany, Turkey, the USA, China, South Korea and France using the new method of wavefunction matching. As an example, the masses and radii of all nuclei up to mass number 50 were calculated using this method. The results agree with the measurements, the researchers now report in the journal “Nature.”

All matter on Earth consists of tiny particles known as atoms. Each atom contains even smaller particles: protons, neutrons and electrons. Each of these particles follows the rules of quantum mechanics. Quantum mechanics forms the basis of quantum many-body theory, which describes systems with many particles, such as atomic nuclei.

One class of methods used by nuclear physicists to study atomic nuclei is the ab initio approach. It describes complex systems by starting from a description of their elementary components and their interactions. In the case of nuclear physics, the elementary components are protons and neutrons. Some key questions that ab initio calculations can help answer are the binding energies and properties of atomic nuclei and the link between nuclear structure and the underlying interactions between protons and neutrons.

May 16, 2024

Scientists control daily biological clock of algae, advancing biomedicine

Posted by in categories: biotech/medical, chemistry

Carl H. Johnson, Cornelius Vanderbilt Professor of Biological Sciences, along with a team of Vanderbilt scientists, have succeeded in adjusting the daily biological clock of cyanobacteria, making the blue-green algae a more prolific producer of renewable fuels, chemicals, and pharmaceuticals like insulin.

May 16, 2024

Finding credible pathways to net-zero emissions: The challenge of scaling up an emerging electrification technology

Posted by in categories: chemistry, energy, sustainability

Chemical and material engineering professor, Adnan Khan, has spent the past 15 years focusing his research on developing sustainable technologies aimed at decarbonizing our energy systems. “This is the most important challenge we face today. We owe this to our future generations,” he says.

May 16, 2024

New method of wavefunction matching helps solve quantum many-body problems

Posted by in categories: chemistry, particle physics, quantum physics

Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur.

This problem has now been solved by an international team of researchers from Germany, Turkey, the U.S., China, South Korea and France using the new method of wavefunction matching. As an example, the masses and radii of all nuclei up to mass number 50 were calculated using this method. The results agree with the measurements, the researchers now report in the journal Nature.

All matter on Earth consists of tiny particles known as atoms. Each atom contains even smaller particles: protons, neutrons and electrons. Each of these particles follows the rules of quantum mechanics. Quantum mechanics forms the basis of quantum many-body theory, which describes systems with many particles, such as .

May 15, 2024

Repurposed beer yeast encapsulated in hydrogels may offer a cost-effective way to remove lead from water

Posted by in categories: chemistry, engineering, particle physics

Every year, beer breweries generate and discard thousands of tons of surplus yeast. Researchers from MIT and Georgia Tech have now come up with a way to repurpose that yeast to absorb lead from contaminated water.

Through a process called biosorption, yeast can quickly absorb even trace amounts of lead and other heavy metals from water. The researchers showed that they could package the yeast inside hydrogel capsules to create a filter that removes lead from water. Because the yeast cells are encapsulated, they can be easily removed from the water once it’s ready to drink.

“We have the hydrogel surrounding the free yeast that exists in the center, and this is porous enough to let water come in, interact with yeast as if they were freely moving in water, and then come out clean,” says Patricia Stathatou, a former postdoc at the MIT Center for Bits and Atoms, who is now a research scientist at Georgia Tech and an incoming assistant professor at Georgia Tech’s School of Chemical and Biomolecular Engineering.

Page 35 of 342First3233343536373839Last