Menu

Blog

Archive for the ‘chemistry’ category: Page 20

Jan 22, 2024

Unlocking the Secrets of Love — Neuroscientists Have Identified the “Chemical Imprint of Desire”

Posted by in categories: biological, chemistry, neuroscience

When you get in the car to see your significant other for dinner, your brain’s reward center is likely flooded with dopamine, a hormone also associated with cravings for sugar, nicotine, and cocaine. This rush of dopamine motivates you to navigate through traffic to maintain that special connection. However, if the dinner is with just a work colleague, this intense flood of dopamine may be reduced to a mere trickle, according to recent research conducted by neuroscientists at the University of Colorado Boulder.

“What we have found, essentially, is a biological signature of desire that helps us explain why we want to be with some people more than other people,” said senior author Zoe Donaldson, associate professor of behavioral neuroscience at CU Boulder.

Jan 21, 2024

Amid controversy, chemical companies bet on plastics pyrolysis

Posted by in categories: chemistry, sustainability

Amid controversy, industry goes all in on plastics pyrolysis.

Chemical companies are fully backing this plastic waste recycling process. To prove their detractors wrong, they will need to make it work.

Jan 21, 2024

Self-assembling molecules have hidden neural network-like abilities

Posted by in categories: chemistry, robotics/AI

A new study by Dr Constantine Evans of Maynooth University and researchers at the University of Chicago and California Institute of Technology, published in Nature, shows how the molecules that build structures can do both the thinking and the doing.

We tend to separate the brain and muscle – the brain does the thinking; the muscle does the doing. The brain takes in complex information about the world, makes decisions, while muscle merely executes.

This brain-muscle separation has also shaped how we think about the working within a single cell; some molecules within cells are seen as ‘thinkers’ that take in information about the chemical environment and decide what the cell needs to do for survival; separately, other molecules are seen as the ‘muscle’, building structures needed for survival.

Jan 21, 2024

Ancient Power Unlocked: Scientists Discover 2.5 Billion-Year-Old Bacterial Energy Source

Posted by in categories: biological, chemistry

Biologists from Konstanz have unveiled a unique and ancient phosphorus-based bacterial metabolism. Central to this discovery are four elements: an analytical calculation dating back to the 1980s, a modern sewage treatment facility, the identification of a novel bacterial species, and a remnant from around 2.5 billion years ago.

Our story begins at the end of the 1980s, with a sheet of paper. On this sheet, a scientist calculated that the conversion of the chemical compound phosphite to phosphate would release enough energy to produce the cell’s energy carrier – the ATP molecule. In this way, it should therefore be possible for a microorganism to supply itself with energy. Unlike most living organisms on our planet, this organism would not be dependent on energy supply from light or from the decomposition of organic matter.

The scientist actually succeeded in isolating such a microorganism from the environment. Its energy metabolism is based on the oxidation of phosphite to phosphate, just as predicted by the calculation. But how exactly does the biochemical mechanism work? Regrettably, the key enzyme needed to understand the biochemistry behind the process remained hidden – and thus the mystery remained unsolved for many years. In the following three decades, the sheet stayed in the drawer, the research approach was put on the back burner. Yet the scientist couldn’t get the thought out of his head.

Jan 19, 2024

SpaceX Starship Can Reach Mars in Just 45 Days

Posted by in categories: chemistry, space travel

People believe that exotic new propulsion systems are needed to reduce the one way trip times from Earth to Mars from 180–270 days down to 45 days each way. The slower mission times are for chemical rockets where we barely get out of Earth orbit with a small rocket engine. SpaceX Starship can refuel after reaching orbit to enable faster orbits (straighter and less looping paths) to go to Mars. This makes 90 day times each way easy with chemical Starship and even more wasteful but still chemical rockets to Mars in 45 days each way.

This is calculated by Ozan Bellik.

In 2033 there are opportunities to do a high thrust ~45 day outbound transit with a ~10.5km/s TMI (trans Mars injection). If you refill in an elliptical orbit that’s at LEO+2.5-3km/s then the TMI burn requirement goes down to 7.5-8km/s. A SpaceX Starship with 1,200 tons of fuel should be able to do with roughly 150 tons of burnout mass. This is enough for ship, residuals, and a crew cabin with enough consumables to last a moderately sized crew for the 45 day transit. The trouble is that once you get there, you are approaching Mars at ~15km/s.

Jan 19, 2024

“Dirt-powered fuel cell” draws near-limitless energy from soil

Posted by in categories: biological, chemistry

A Northwestern University team has demonstrated a remarkable new way to generate electricity, with a paperback-sized device that nestles in soil and harvests power created as microbes break down dirt – for as long as there’s carbon in the soil.

Microbial fuel cells, as they’re called, have been around for more than 100 years. They work a little like a battery, with an anode, cathode and electrolyte – but rather than drawing electricity from chemical sources, they work with bacteria that naturally donate electrons to nearby conductors as they chow down on soil.

The issue thus far has been keeping them supplied with water and oxygen, while being buried in the dirt. “Although MFCs have existed as a concept for more than a century, their unreliable performance and low output power have stymied efforts to make practical use of them, especially in low-moisture conditions,” said UNW alumnus and project lead Bill Yen.

Jan 19, 2024

Ultimate Computing: Biomolecular Consciousness and NanoTechnology

Posted by in categories: biological, chemistry, computing, engineering, mathematics, nanotechnology, neuroscience, physics

The possibility of direct interfacing between biological and technological information devices could result in a merger of mind and machine — Ultimate Computing. This book, a thorough consideration of this idea, involves a number of disciplines, including biochemistry, cognitive science, computer science, engineering, mathematics, microbiology, molecular biology, pharmacology, philosophy, physics, physiology, and psychology.

Jan 19, 2024

Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons

Posted by in categories: biological, chemistry, neuroscience

Silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits can emulate neural features, yet are complicated to fabricate and not biocompatible. Here, the authors report an ion-modulated antiambipolarity in mixed ion–electron conducting polymers demonstrating capability of sensing, spiking, emulating the most critical biological neural features, and stimulating biological nerves in vivo.

Jan 18, 2024

Supernova Forensics: Unraveling N132D’s Spectral Mysteries With XRISM

Posted by in categories: chemistry, cosmology

XRISM’s first high-resolution spectrum of supernova remnant N132D offers unprecedented insights into the chemical and physical properties of the aftermath of a star’s explosion, enhancing our understanding of the universe’s elemental composition.

This image is the first high-resolution energy spectrum from the Resolve instrument on JAXA’s XRISM mission. It shows the energy of X-rays being produced within the remains of a massive star exploding in the nearby Large Magellanic Cloud, creating a ‘supernova remnant’ known as N132D. Spectra such as this one will enable scientists to measure the temperature and motion of X-ray emitting gas with unprecedented sensitivity and accuracy.

The spectrum indicates which chemical elements exist in N132D. XRISM can identify each element by measuring the specific energy of X-ray light that it emits (the label ‘keV’ on the x axis of the graph refers to kiloelectronvolts, a unit of energy). The ‘energy resolution’ of XRISM (its capability to distinguish X-ray light arriving with different amounts of energy) is incredible. The faint grey line shows the same spectrum from the XIS instrument on JAXA ’s Suzaku X-ray telescope (source). The energy resolution from XRISM is more than 40 times better over the energy range shown in this spectrum.

Jan 18, 2024

New gut-brain circuits found for sugar and fat cravings

Posted by in categories: chemistry, food, neuroscience

Understanding why we overeat unhealthy foods has been a long-standing mystery. While we know food’s strong power influences our choices, the precise circuitry in our brains behind this is unclear. The vagus nerve sends internal sensory information from the gut to the brain about the nutritional value of food. But, the molecular basis of the reward in the brain associated with what we eat has been incompletely understood.

A study published in Cell Metabolism, by a team from the Monell Chemical Senses Center, unravels the internal neural wiring, revealing separate fat and sugar craving pathways, as well as a concerning result: Combining these pathways overly triggers our desire to eat more than usual.

“Food is nature’s ultimate reinforcer,” said Monell scientist Guillaume de Lartigue, Ph.D., lead author of the study. “But why fats and sugars are particularly appealing has been a puzzle. We’ve now identified in the gut rather than taste cells in the mouth are a key driver. We found that distinct gut– pathways are recruited by fats and sugars, explaining why that donut can be so irresistible.”

Page 20 of 295First1718192021222324Last