Menu

Blog

Archive for the ‘chemistry’ category: Page 147

Feb 14, 2023

The Structure of DNA

Posted by in categories: biotech/medical, chemistry, genetics

An exploration of the structure of deoxyribonucleic acid, or DNA. If you want to learn more, join our free MITx #700x Introduction to Biology course (http://bit.ly/700xBio) or our #703x Genetics (https://bit.ly/GeneticsPart1) Also try #705x Biochemistry. (http://bit.ly/705xBiochem) or our advanced #728x Molecular Biology course (http://bit.ly/MITx7281x). Learn more about our work: http://web.mit.edu/mitxbio/courses.html.

This video was created for MITx 7.28.1x Molecular Biology: DNA Replication & Repair, offered on edX.

Continue reading “The Structure of DNA” »

Feb 14, 2023

Viral Budding of the SARS-CoV-2 virus — NanoBiology Course 2020 — Tuesday Group

Posted by in categories: biotech/medical, chemistry, particle physics

In this video students of the Maastricht Science Program NanoBiology Course 2020, show their explanation of the SARS-CoV-2 viral budding. Using CellPAINT, UCFS Chimera and their creativity they explain the nanobiology of how the SARS-CoV-2 virion can bud and leave the cell.

Viruses are not living things. They are just complicated assemblies of molecules, in particular macromolecules such as proteins, oligonucleotides, combined with lipids and carbohydrates. A virus cannot function or reproduce by itself. It needs a host cell.

Continue reading “Viral Budding of the SARS-CoV-2 virus — NanoBiology Course 2020 — Tuesday Group” »

Feb 14, 2023

New Models Help Unveil the Mystery of Life’s Origins on Earth

Posted by in categories: biological, chemistry

New research reveals clues about the physical and chemical characteristics of Earth when life is thought to have emerged.

About four billion years ago, the first signs of life emerged on Earth in the form of microbes. Although scientists are still determining exactly when and how these microbes appeared, it’s clear that the emergence of life is intricately intertwined with the chemical and physical characteristics of early Earth.

“It is reasonable to suspect that life could have started differently—or not at all—if the early chemical characteristics of our planet were different,” says Dustin Trail, an associate professor of earth and environmental sciences at the University of Rochester.

Feb 13, 2023

Residents near Ohio train derailment report dead fish and chickens as authorities say it’s safe to return

Posted by in categories: chemistry, transportation

Some people who live near the derailment site in East Palestine, Ohio, fear they and their animals may be exposed to chemicals through the air, water and soil.

Feb 13, 2023

Scientists ‘genetically edit’ bread to cut cancer-causing chemical

Posted by in categories: biotech/medical, chemistry, genetics

Amount of toxin present in wheat, which is carcinogenic when heated, can be reduced and grown, new field study confirms Toast could soon be healthier after scientists grew a field of wheat genetically-edited to remove a cancer-causing chemical. Bread, when baked, produces a dangerous toxin called acrylamide, which is believed to be carcinogenic and when toasted is even more lethal.

Feb 13, 2023

Farming robot kills 200,000 weeds per hour with lasers

Posted by in categories: chemistry, food, health, robotics/AI, space

https://youtube.com/watch?v=fK3AQgt47z4

In 2021, Carbon Robotics unveiled the third-generation of its Autonomous Weeder, a smart farming robot that identifies weeds and then destroys them with high-power lasers. The company now has taken the technology from that robot and built a pull-behind LaserWeeder — and it kills twice as many weeds.

The weedkiller challenge: Weeds compete with plants for space, sunlight, and soil nutrients. They can also make it easier for insect pests to harm crops, so weed control is a top concern for farmers.

Continue reading “Farming robot kills 200,000 weeds per hour with lasers” »

Feb 12, 2023

From the Shadows: A New Method for X-Ray Color Imaging

Posted by in categories: biotech/medical, chemistry, computing, media & arts

Researchers at the University of Göttingen have created a new approach to generate colored X-ray images. Previously, the only way to determine the chemical composition and arrangement of components in a sample using X-ray fluorescence analysis was to focus X-rays on the entire sample and scan it, which was both time-consuming and costly. The new method allows for the creation of an image of a large area with just one exposure, eliminating the need for focusing and scanning. The findings were published in the journal Optica.

In contrast to visible light, there are no comparably powerful lenses for “invisible” radiation, such as X-ray, neutron, or gamma radiation. However, these types of radiation are essential, for example, in nuclear medicine and radiology, as well as in industrial testing and material analysis.

Uses for X-ray fluorescence include analyzing the composition of chemicals in paintings and cultural artifacts to determine authenticity, origin, or production technique, or the analysis of soil samples or plants in environmental protection. The quality and purity of semiconductor components and computer chips can also be checked using X-ray fluorescence analysis.

Feb 12, 2023

What energy source sparked the evolution of life?

Posted by in categories: chemistry, energy

Leading theories suggest that the first energy used by life was either from the sun or from geothermal heat and chemistry at the bottom of the ocean.

Feb 11, 2023

New models shed light on life’s origin

Posted by in categories: biological, chemistry, space

The first signs of life emerged on Earth in the form of microbes about four billion years ago. While scientists are still determining exactly when and how these microbes appeared, it’s clear that the emergence of life is intricately intertwined with the chemical and physical characteristics of early Earth.

“It is reasonable to suspect that life could have started differently—or not at all—if the early chemical characteristics of our planet were different,” says Dustin Trail, an associate professor of and environmental sciences at the University of Rochester.

But what was Earth like billions of years ago, and what characteristics may have helped life to form? In a paper published in Science, Trail and Thomas McCollom, a research associate at the University of Colorado Boulder, reveal key information in the quest to find out. The research has important implications not only for discovering the but also in the search for life on other planets.

Feb 11, 2023

Blue Alchemist Technology Powers our Lunar Future

Posted by in categories: chemistry, energy, space

To make long-term presence on the Moon viable, we need abundant electrical power. We can make power systems on the Moon directly from materials that exist everywhere on the surface, without special substances brought from Earth. We have pioneered the technology and demonstrated all the steps. Our approach, Blue Alchemist, can scale indefinitely, eliminating power as a constraint anywhere on the Moon.

We start by making regolith simulants that are chemically and mineralogically equivalent to lunar regolith, accounting for representative lunar variability in grain size and bulk chemistry. This ensures our starting material is as realistic as possible, and not just a mixture of lunar-relevant oxides. We have developed and qualified an efficient, scalable, and contactless process for melting and moving molten regolith that is robust to natural variations in regolith properties on the Moon.

Using regolith simulants, our reactor produces iron, silicon, and aluminum through molten regolith electrolysis, in which an electrical current separates those elements from the oxygen to which they are bound. Oxygen for propulsion and life support is a byproduct.