Menu

Blog

Archive for the ‘biotech/medical’ category: Page 704

Apr 14, 2023

NF-κB Decoy ODN-Loaded Poly(Lactic-co-glycolic Acid) Nanospheres Inhibit Alveolar Ridge Resorption

Posted by in category: biotech/medical

Residual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which is recognized for regulating prototypical proinflammatory signals, physiological bone metabolism, pathologic bone destruction, and bone regeneration. The aim of this study was to investigate the therapeutic effect of NF-κB decoy ODNs on the extraction sockets of Wistar/ST rats when delivered by poly(lactic-co-glycolic acid) (PLGA) nanospheres.

Apr 14, 2023

What are Cognitive Light Cones? (Michael Levin Interview)

Posted by in categories: bioengineering, biotech/medical, genetics, robotics/AI

Michael Levin’s 2019 paper “The Computational Boundary of a Self” is discussed. The main topics of conversation include Scale-Free Cognition, Surprise & Stress, and the Morphogenetic Field. Michael Levin is a scientist at Tufts University; his lab studies anatomical and behavioral decision-making at multiple scales of biological, artificial, and hybrid systems. He works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science.

🚩The Computational Boundary of a Self: Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition (can read in browser or download as pdf)
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02688/full.

Continue reading “What are Cognitive Light Cones? (Michael Levin Interview)” »

Apr 14, 2023

MIT scientists discover ‘remarkable’ way to reverse Alzheimer’s disease

Posted by in categories: biotech/medical, neuroscience

Scientists at MIT have unlocked a major breakthrough in the battle to reverse the effects of Alzheimer’s disease — one that shows “dramatic reductions” in neurodegeneration, a report stated. The exciting achievement came about after researchers were able to interfere with an enzyme typically found to be overactive in the brains of Alzheimer’s patients.

Apr 14, 2023

Novel device smaller than rice successfully shrinks pancreatic cancer

Posted by in categories: biotech/medical, nanotechnology

Called the nanofluidic drug-eluting seed (NDES), it delivers low-dose immunotherapy in the form of CD40 monoclonal antibodies (mAb).

In a significant groundbreaking medical development, researchers have created a tiny device, smaller than a grain of rice, to deliver drugs directly to the pancreatic tumor.

Nano-device uses less dosage to shrink cancer.

Continue reading “Novel device smaller than rice successfully shrinks pancreatic cancer” »

Apr 14, 2023

Scientists Merge Biology and Technology

Posted by in categories: 3D printing, biotech/medical, neuroscience

Finding ways to integrate electronics into living tissue could be crucial for everything from brain implants to new medical technologies. A new approach has shown that it’s possible to 3D print circuits into living worms.

There has been growing interest in finding ways to more closely integrate technology with the human body, in particular when it comes to interfacing electronics with the nervous system. This will be crucial for future brain-machine interfaces and could also be used to treat a host of neurological conditions.

But for the most part, it’s proven difficult to make these kinds of connections in ways that are non-invasive, long-lasting, and effective. The rigid nature of standard electronics means they don’t mix well with the squishy world of biology, and getting them inside the body in the first place can require risky surgical procedures.

Apr 14, 2023

CRISPR Breakthrough: Scientists Can Now Turn Genes On and Off at Whim

Posted by in categories: bioengineering, biotech/medical, genetics

The gene-editing system CRISPR-Cas9 which has revolutionized genetic engineering over the past decade involves cutting DNA strands which is a process that can be quite hard to control and can result in unwanted genetic changes. Now, thanks to researchers at the Massachusetts Institute of Technology and the University of California, San Francisco (UCSF), a new gene-editing technology called CRISPRoff can change that, according to a press release.

“Fast forward four years [from the initial grant], and CRISPRoff finally works as envisioned in a science fiction way,” says co-senior author Luke Gilbert. “It’s exciting to see it work so well in practice.”

Apr 14, 2023

QuASeR: Quantum Accelerated de novo DNA sequence reconstruction

Posted by in categories: biotech/medical, information science, quantum physics

In this, we present QuASeR, a reference-free DNA sequence reconstruction implementation via de novo assembly on both gate-based and quantum annealing platforms. This is the first time this important application in bioinformatics is modeled using quantum computation. Each one of the four steps of the implementation (TSP, QUBO, Hamiltonians and QAOA) is explained with a proof-of-concept example to target both the genomics research community and quantum application developers in a self-contained manner. The implementation and results on executing the algorithm from a set of DNA reads to a reconstructed sequence, on a gate-based quantum simulator, the D-Wave quantum annealing simulator and hardware are detailed. We also highlight the limitations of current classical simulation and available quantum hardware systems. The implementation is open-source and can be found on https://github.com/QE-Lab/QuASeR.

Citation: Sarkar A, Al-Ars Z, Bertels K (2021) QuASeR: Quantum Accelerated de novo DNA sequence reconstruction. PLoS ONE 16: e0249850. https://doi.org/10.1371/journal.pone.

Editor: Archana Kamal, University of Massachusetts Lowell, UNITED STATES.

Apr 14, 2023

Study unveils neural processes underpinning the re-emergence of consciousness after anesthesia

Posted by in categories: biotech/medical, neuroscience

Before undergoing surgeries and other invasive medical procedures, patients typically undergo anesthesia. Anesthesia consists in giving patients a class of drugs (i.e., anesthetics) that cause them to lose feeling in specific areas of the body (i.e., local anesthesia) or fully lose awareness during a procedure (i.e., general anesthesia). These anesthetics can be administered to patients via injection, inhalation, skin-numbing lotions, and other means.

In the past, doctors and viewed as a passive process that could not be influenced or interrupted once drugs were administered. More recently, however, studies showed that it is in fact an active process that can be experimentally controlled and acted on.

A research team at the Southern University of Science and Technology in China recently carried out a study investigating the processes underpinning while under general and those associated with the subsequent re-emergence of awareness. Their findings, published in Nature Neuroscience, highlight possible strategies that could help anesthesiologists to extend and deepen or shorten periods of anesthesia.

Apr 14, 2023

A review of existing studies investigating online romance fraud

Posted by in categories: biotech/medical, cybercrime/malcode

Online romance fraud is an increasingly common phenomenon, which can affect people of all ages worldwide. This type of fraud occurs when a malicious individual or members of a criminal organization engage with users online pretending to be romantically interested in them, while trying to trick them into sending money or sharing confidential information with them.

Online scams can have a detrimental effect on a victim’s life, causing them to spend all their savings, become indebted, and even be subjected to blackmail or identity theft. A team of researchers at Abertay University in the U.K. recently reviewed existing literature focusing on romance and then summarized some of the most recurring findings in a paper pre-published on arXiv.

“Romance fraud has been growing over the last decade or so and was exacerbated by the COVID-19 pandemic which saw a surge in cybercrime and cyberattacks,” Dr. Lynsay Shepherd, one of the researchers who carried out the study, told Tech Xplore. “Our paper provides a comprehensive overview of romance fraud research, which could serve as a starting point for future research in the field.”

Apr 14, 2023

Reduced editing implicated in mitochondrial cascade of schizophrenia related RNA

Posted by in categories: biotech/medical, neuroscience

Researchers at the University of California at Los Angeles have analyzed RNA editing in postmortem brains of four schizophrenia cohorts and uncovered a significant and reproducible trend of hypo-editing in patients of European descent.

The paper “Widespread RNA hypo-editing in schizophrenia and its relevance to ,” published in Science Advances, details the research team’s efforts to isolate functionally impacting RNA editing sites to understand how dysregulated editing contributes to various disorders.

In the data analysis, researchers identified 26,841 unique differential editing sites. They observed a significant trend of lower than expected amounts of RNA editing in the schizophrenia groups, which was reproduced in three of the four cohorts of European individuals.

Page 704 of 2,787First701702703704705706707708Last