Menu

Blog

Archive for the ‘biotech/medical’ category: Page 37

Oct 21, 2024

Bioengineering cells to support new capabilities

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

Every cell is beholden to a phenomenon called cell fate, a sort of biological preset determined by genetic coding. Burgeoning cells take their developmental cues from a set of core genetic instructions that shape their structure and function and how they interact with other cells in the body.

To you or me, it’s biological law. But to a group of researchers at Stanford Medicine, it’s more of a suggestion. Unconstrained by the rules of evolution, these scientists are instead governed by a question: What if?

What if you could eat a vaccine? Or create a bacterium that could also detect and attack cancer? What if furniture could grow from a seed?

Oct 21, 2024

Scientists Unravel Key to the Centromere’s Eternal Life, Solving Decades-Old Mystery

Posted by in categories: biotech/medical, genetics, life extension

Yay face_with_colon_three


Researchers discovered that PLK1 triggers a process ensuring centromere preservation during cell division by activating the Mis18 complex and controlling CENP-A loading. This finding is key to understanding how cells correctly divide their genetic material, preventing diseases like cancer.

Scientists have resolved a decade-long mystery about the mechanism that maintains the centromere, the crucial region responsible for ensuring accurate DNA division during cell division.

Continue reading “Scientists Unravel Key to the Centromere’s Eternal Life, Solving Decades-Old Mystery” »

Oct 21, 2024

Exploring the role gut hormones play in regulating lifespan

Posted by in categories: biotech/medical, life extension, neuroscience

The gut-brain axis has long been a subject of interest in lifespan research, and GLP-1 agonists, already used in the treatment of obesity and diabetes, are showing promise in the field of healthspan therapeutics.


New research on gut-to-brain signaling uncovers potential links between gut hormones like GLP-1 and longevity.

Oct 21, 2024

Understanding Aging through the Lense of Gut Microbiome

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Intestinal stem cells play an important role in maintaining intestinal homeostasis and repairing damaged epithelial tissue. These cells function in a regenerative manner to generate new tissue throughout the growth phase and repair damaged tissue during the aging process.101 The interactions between the gut microbiome and intestinal stem cells are crucial because, if this interaction is comprehended, it may be possible to address various disorders that require stem cell therapy, heal wounds, and improve the durability of organ transplants.101 A recent study showed a connection between hematopoietic stem cells and the microbiome through altering metabolic stress.66 Therefore, the microbiota is crucial for maintaining microbial homeostasis, regulating metabolism, and the innate and adaptive immune systems.101 Furthermore, the study reveals that compositional alterations in the gut microbiome driven by dysbiosis are related to stem cell aging, metabolic dysregulations, stem cells’ epigenetic instability, and abnormal immune system activation.66

In the field of anti-aging, stem cells are regarded to have great potential. In numerous organs, it has been demonstrated that as we age, stem cells lose their capacity for self-renewal and differentiation and run out of resources.89 The emergence of anti-aging medications should address the dysregulation caused by aging that affects stem cells’ capacity for differentiation and self-renewal by re-regulating intrinsic and extrinsic variables. The host microbiome, hormones, local immune system, systemic inflammation, and niche structure are just a few examples of microenvironmental and systemic factors that influence stem cell aging.66

Endogenous ethanol is a class of microbiological metabolites. Proteobacteria, including E. coli and other Enterobacteriaceae, produce ethanol with bacterial origins. High endogenous ethanol levels in the human hippocampus inhibit proliferating stem cells and reduce progenitor and stem cells.102 Additionally, when more ethanol accumulates in the gut, it enhances the permeability of the gut by disrupting epithelial tight junctions, particularly zonula occludens. This enables the movement of pathogenic microbes, their endotoxins, and ethanol across the epithelial layer, causing more immediate and adverse effects on tissues. As a result, the stem cell reserve depletes, hastening the aging process and compensating for damaged tissues.103

Oct 21, 2024

Cancer Cells Hijack the Neuron-Glia Connection for Brain Metastasis

Posted by in categories: biotech/medical, neuroscience

The incidence of breast cancer in women has increased significantly over the past few decades, but advancements in targeted therapies have led to a decrease in death…


Breast cancer cells send microRNA-filled vesicles to the brain, creating a nutrient-rich environment that facilitates metastasis.

Oct 21, 2024

Researchers Discover New Bacterium that Causes Gut Immunodeficiency

Posted by in category: biotech/medical

Cleveland Clinic researchers have discovered a new bacterium that weakens the immune system in the gut, potentially contributing to certain inflammatory and infectious gut diseases.

The team identified the bacterium, Tomasiella immunophila (T. immunophila), which plays a key role in breaking down a crucial immune component of the gut’s multi-faceted protective immune barrier.

Identifying this bacterium is the first step to developing new treatments for a variety of inflammatory and infectious gut diseases. These conditions, including inflammatory bowel disease, Crohn’s and ulcerative colitis, are associated with decreased levels of secretory immunoglobulin A (SIgA), an antibody that protects mucosal surfaces.

Oct 21, 2024

Ancient DNA from South Africa rock shelter reveals the same human population stayed there for 9,000 years

Posted by in categories: biotech/medical, genetics

Ancient human genomes reconstructed from remains at a southern African rock shelter show remarkable genetic continuity over time.

Oct 21, 2024

DNA records of millions of Americans could be exposed amid 23andMe turmoil

Posted by in categories: biotech/medical, cybercrime/malcode, genetics

A huge data breach followed by a plummeting valuation has stoked fears of a sale of 23andMe along with all of its customers’ genetic data.

Oct 21, 2024

New Genes Linked to Muscle Aging Discovered

Posted by in categories: biotech/medical, life extension

Source: Nottingham Trent University.

Scientists have identified previously unreported genes which appear to play a key role in the muscle aging process. It is hoped that the findings from a Nottingham Trent University study could be used to help delay the impact of the aging process.

The study, which also involved Sweden’s Karolinska Institute, Karolinska University Hospital, and Anglia Ruskin University, is reported in the Journal of Cachexia, Sarcopenia and Muscle.

Oct 21, 2024

Epigenetics opens the door to faster cancer detection

Posted by in categories: biotech/medical, genetics, health

With liquid biopsies, detecting cancer and tracking treatment progress can be as easy as taking a blood test. This is an increasingly popular way of monitoring cancer, because it’s much less invasive than solid tumour biopsies. And liquid biopsies can become even more sensitive if they capture methylation information as well as genetic data.

Usually, liquid biopsies for cancer rely on the detection of small amounts of DNA that are shed from a tumour into the bloodstream. But especially in the disease’s early stages, circulating tumour DNA (ctDNA) levels are very low and point mutations linked to cancer can be easy to miss.

“If we want to develop assays to detect cancer earlier, we need very sensitive detection of these rare tumour fragments,” says Charlotte Proudhon, group leader at the Research Institute for Environmental and Occupational Health in Rennes, France, whose team are among those now developing liquid biopsy methods that include epigenetic markers, such as methylation.

Page 37 of 2,751First3435363738394041Last