Menu

Blog

Archive for the ‘biotech/medical’ category: Page 178

May 9, 2024

Dermal injury drives a skin to gut axis that disrupts the intestinal microbiome and intestinal immune homeostasis in mice

Posted by in category: biotech/medical

News: Skin injuries can modify the gut microbiome, according to a NIAMSfunded study led by UC San Diego.

Read the OpenAccess paper via Nature Portfolio.


The microbial community in the intestine can affect other organs such as the skin but it is not clear if the opposite can occur. Here the authors show that skin wounding affects the microbial composition of the intestinal flora which then enhances DSS induced colitis and intestinal inflammation.

Continue reading “Dermal injury drives a skin to gut axis that disrupts the intestinal microbiome and intestinal immune homeostasis in mice” »

May 8, 2024

Could cannabis treat cancer someday? Here’s what the science says so far

Posted by in categories: biotech/medical, science

For decades, cannabis has been studied for its potential antitumor properties, but whether it can actually treat cancer is still unknown.

May 8, 2024

Wind-up nanotechnology

Posted by in categories: biotech/medical, nanotechnology

Carbon nanotubes are one of the most elastically strong materials out there.


When I was a kid, I used to take allowance money and occasionally buy rubber-band-powered balsa wood airplanes at a local store. Maybe you’ve seen these. You wind up the rubber band, which stretches the elastomer and stores energy in the elastic strain of the polymer, as in Hooke’s Law (though I suspect the rubber band goes well beyond the linear regime when it’s really wound up, because of the higher order twisting that happens). Rhett Alain wrote about how well you can store energy like this. It turns out that the stored energy per mass of the rubber band can get pretty substantial.

Carbon nanotubes are one of the most elastically strong materials out there. A bit over a decade ago, a group at Michigan State did a serious theoretical analysis of how much energy you could store in a twisted yarn made from single-walled carbon nanotubes. They found that the specific energy storage could get as large as several MJ/kg, as much as four times what you get with lithium ion batteries!

Continue reading “Wind-up nanotechnology” »

May 8, 2024

Strictly no dancing

Posted by in categories: biotech/medical, quantum physics

Since the discovery of quantum mechanics more than a hundred years ago, it has been known that electrons in molecules can be coupled to the motion of the atoms that make up the molecules. Often referred to as molecular vibrations, the motion of atoms act like tiny springs, undergoing periodic motion. For electrons in these systems, being joined to the hip with these vibrations means they are constantly in motion too, dancing to the tune of the atoms, on timescales of a millionth of a billionth of a second.

But all this dancing around leads to a loss of energy and limits the performance of organic molecules in applications like organic light emitting diodes (OLEDs), infrared sensors and fluorescent biomarkers used in the study of cells and for tagging diseases such as cancer cells.

Now, researchers using laser-based spectroscopic techniques have discovered ‘new molecular design rules’ capable of halting this molecular dance. Their results, reported in Nature (“Decoupling excitons from high-frequency vibrations in organic molecules”), revealed crucial design principles that can stop the coupling of electrons to atomic vibrations, in effect shutting down their hectic dancing and propelling the molecules to achieve unparalleled performance.

May 8, 2024

AlphaFold 3 predicts the structure and interactions of all of life’s molecules

Posted by in categories: biotech/medical, nanotechnology, open access

Inside every plant, animal and human cell are billions of molecular machines. They’re made up of proteins, DNA and other molecules, but no single piece works on its own. Only by seeing how they interact together, across millions of types of combinations, can we start to truly understand life’s processes.

In a paper published in Nature, we introduce AlphaFold 3, a revolutionary model that can predict the structure and interactions of all life’s molecules with unprecedented accuracy. For the interactions of proteins with other molecule types we see at least a 50% improvement compared with existing prediction methods, and for some important categories of interaction we have doubled prediction accuracy.

We hope AlphaFold 3 will help transform our understanding of the biological world and drug discovery. Scientists can access the majority of its capabilities, for free, through our newly launched AlphaFold Server, an easy-to-use research tool. To build on AlphaFold 3’s potential for drug design, Isomorphic Labs is already collaborating with pharmaceutical companies to apply it to real-world drug design challenges and, ultimately, develop new life-changing treatments for patients.

May 8, 2024

AlphaFold Server Demo — Google DeepMind

Posted by in categories: biotech/medical, chemistry, open access, robotics/AI

Google DeepMind’s newly launched AlphaFold Server is the most accurate tool in the world for predicting how proteins interact with other molecules throughout the cell. It is a free platform that scientists around the world can use for non-commercial research. With just a few clicks, biologists can harness the power of AlphaFold 3 to model structures composed of proteins, DNA, RNA and a selection of ligands, ions and chemical modifications.

AlphaFold Server will help scientists make novel hypotheses to test in the lab, speeding up workflows and enabling further innovation. Our platform gives researchers an accessible way to generate predictions, regardless of their access to computational resources or their expertise in machine learning.

Continue reading “AlphaFold Server Demo — Google DeepMind” »

May 8, 2024

New AI Tools Predict How Life’s Building Blocks Assemble

Posted by in categories: biotech/medical, information science, nanotechnology, robotics/AI

Proteins are the molecular machines that sustain every cell and organism, and knowing what they look like will be critical to untangling how they function normally and malfunction in disease. Now researchers have taken a huge stride toward that goal with the development of new machine learning algorithms that can predict the folded shapes of not only proteins but other biomolecules with unprecedented accuracy.

In a paper published today in Nature, Google DeepMind and its spinoff company Isomorphic Labs announced the latest iteration of their AlphaFold program, AlphaFold3, which can predict the structures of proteins, DNA, RNA, ligands and other biomolecules, either alone or bound together in different embraces. The findings follow the tail of a similar update to another deep learning structure-prediction algorithm, called RoseTTAFold All-Atom, which was published in March in Science.

May 8, 2024

Researchers discover how Gut Muscle can be Vital for Growth, Repair and Treatments

Posted by in categories: biotech/medical, food

The findings, published in a study in Developmental Cell, reveal that intestinal smooth muscle originates in embryos and forms by the same process that is a hallmark of creating scar tissue when a wound heals.

The smooth muscle sits inside tiny finger-like projections called villi, which absorb fats—also known as lipids—from foods. Contractions of these smooth muscles squeeze absorbed dietary fats through lymphatic capillaries, called lacteals, which send the fats into the systemic blood circulation to produce energy.

May 8, 2024

The Key Roles of DNA in Brief

Posted by in categories: biotech/medical, genetics

Advances in DNA technology enable personalized approaches to healthcare, tailoring treatments and therapies based on an individual’s genetic makeup to improve efficacy and minimize side effects.

May 8, 2024

It’s Not Recommended to Rinse Your Teeth After Brushing. Here’s Why

Posted by in category: biotech/medical

If you’re still rinsing your teeth with water after brushing them, it may be time to stop. There are actually some benefits to leaving that extra bit of toothpaste on your teeth. I used to rinse after brushing my teeth — and even went back over them with a wet toothbrush — to remove any remnants of toothpaste left in my mouth. But then I found out from a dentist’s TikTok video that doing that isn’t the most effective method of keeping your chompers in good shape.

Instead, I now spit out as much toothpaste as I can without swishing with water, so I can allow the toothpaste to do its job just a little longer. However, I wasn’t sure why I was doing this — or what the benefits were — until I spoke with an expert.

I talked to Dr. Edmond Hewlett, consumer advisor for the American Dental Association and a professor at UCLA School of Dentistry, to find out why you shouldn’t rinse your mouth with water after brushing your teeth. Here’s the answer. For more tips, here’s why you should floss before brushing your teeth.

Page 178 of 2,755First175176177178179180181182Last