Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1472

Oct 5, 2020

Neuroscientists discover a molecular mechanism that allows memories to form

Posted by in categories: biotech/medical, genetics, neuroscience

When the brain forms a memory of a new experience, neurons called engram cells encode the details of the memory and are later reactivated whenever we recall it. A new MIT study reveals that this process is controlled by large-scale remodeling of cells’ chromatin.

This remodeling, which allows involved in storing memories to become more active, takes place in multiple stages spread out over several days. Changes to the density and arrangement of chromatin, a highly compressed structure consisting of DNA and proteins called histones, can control how active specific genes are within a given cell.

“This paper is the first to really reveal this very mysterious process of how different waves of genes become activated, and what is the epigenetic mechanism underlying these different waves of gene expression,” says Li-Huei Tsai, the director of MIT’s Picower Institute for Learning and Memory and the senior author of the study.

Oct 5, 2020

Infrared Snake Eyes: TRPA1 and the Thermal Sensitivity of the Snake Pit Organ

Posted by in category: biotech/medical

Circa 2010


The pit organs of pit vipers, pythons, and boas are remarkable sensory devices that allow these snakes to detect infrared radiation emitted by warm-blooded prey. It has been theorized that this capacity reflects the pit organ’s exceptional sensitivity to subtle fluctuations in temperature, but the molecules responsible for this extreme thermal resolution have been unknown. New evidence shows that pit organs respond to temperature using the warmth-activated cation channel TRPA1 (transient receptor potential ankyrin 1), a finding that provides a first glimpse of the underlying molecular hardware. The properties of these snake TRPA1s raise intriguing questions about the mechanisms responsible for the exceptional sensitivity of many biological thermoreceptors and about the evolutionary origins of these warmth-activated TRP channels.

Oct 5, 2020

A quantum leap In the drug development world

Posted by in categories: biotech/medical, computing

Microfluidic chips that simulate human tissue enable us to conduct medical experiments in ways that could not have been even imagined only a few years ago. Two leading Israeli researchers report from the turbulent Israeli front line of the global ‘organ-on-a-chip’ sector.

Oct 5, 2020

High throughput screening identifies molecules that reduce cellular stress

Posted by in categories: biotech/medical, life extension

For many, getting older can unfortunately mean an increased risk of illness from cardiovascular disease to cancer. University of Michigan scientists are actively researching the biological underpinnings of aging with the aim of developing interventions that could potentially help people live longer, healthier lives.

A new paper in the journal Science Advances describes the discovery of several promising small molecules that appear to reduce in mouse skin and could lengthen life.

“Cellular resistance appears to be a common feature of long-lived organisms, such as invertebrates and mice,” says the paper’s lead author David Lombard, M.D., Ph.D., associate professor of pathology. Lombard is part of a multidisciplinary group at U-M’s Paul F. Glenn Center for Aging. Recent research from colleague and fellow study author Richard Miller, M.D., Ph.D., found several promising drugs, including rapamycin, a cancer drug, and acarbose, a diabetes drug, that extended life in mice.

Oct 5, 2020

Hepatitis C discovery wins the Nobel Prize

Posted by in category: biotech/medical

The virus is a major cause of liver cancer and can lead to people needing a liver transplant.

Oct 4, 2020

Laser test replaces needles for diabetes check

Posted by in categories: biotech/medical, electronics

Circa 2015


A NEW LASER sensor that monitors blood glucose levels without puncturing the skin could transform the lives of millions of diabetics by providing a pain-free way of monitoring blood glucose levels.

Oct 4, 2020

Awakening After a Sleeping Pill

Posted by in categories: biotech/medical, neuroscience

Summary: A patient who suffered brain injury can temporarily walk, talk, and recognize family members thanks to the sleep medication Zolpidem.

Source: Radboud University

A patient who could not move and talk spontaneously for eight years started to do so again after being administered a sleeping pill. The spectacular but temporary effect was visualized with brain scans, giving researchers from Radboud university medical center and Amsterdam UMC a better understanding of this disorder’s underlying neurophysiological processes. The article has been published in Cortex.

Oct 4, 2020

DARPA’s SIGMA Program Transitions to Protect Major U.S. Metropolitan Region

Posted by in categories: biological, biotech/medical, chemistry, terrorism, transportation

On a blustery winter day last December, a car carrying radioactive material approached one of the Port Authority of New York and New Jersey’s major transportation hubs. As the car got closer, an alarm flashed and sounded on a large monitor in the police operations center, identifying on a digital map the exact location of the vehicle and the specific radioactive isotope radiating from the car – Cesium-137. Within minutes, officers in the Port Authority Police Department – equipped with vehicle-mounted and pocket-sized radiation sensors displaying the same real-time digital map – tracked the vehicle and apprehended the suspects in a parking lot. Thankfully, the potential terrorists and radiation-emitting isotope were not a threat, as the scenario was only a drill.

The December exercise marked the capstone for DARPA’s SIGMA program, culminating a five-year effort to develop and deploy an automated, high-performance, networked radiation detection capability for counterterrorism and continuous city-to-region scale radiological and nuclear threat monitoring. The transition of the radiation-detection system took place prior to the coronavirus disease (COVID-19) pandemic. In the eight months since the SIGMA transition, DARPA has been developing and testing additional sensors under its SIGMA+ effort to detect chemical, biological and explosive threats as well.

“We want to thank the Port Authority for their outstanding support throughout the SIGMA program and their continued support as we test SIGMA+ sensors,” said Mark Wrobel, DARPA program manager in the Defense Sciences Office. “Being able to test and refine the system in the country’s largest metropolitan region was invaluable in taking SIGMA from a research project to an operationally deployed system in just five years.”

Oct 4, 2020

A DARPA-Funded Implantable Biochip to Detect COVID-19 Could Hit Markets by 2021

Posted by in categories: biotech/medical, genetics, health

An experimental new vaccine claims to be able to change human DNA and could be deployed against COVID-19 by 2021 through a biochip implant.


The most significant scientific discovery since gravity has been hiding in plain sight for nearly a decade and its destructive potential to humanity is so enormous that the biggest war machine on the planet immediately deployed its vast resources to possess and control it, financing its research and development through agencies like the National Institutes of Health (NIH), the Defense Advanced Research Projects Agency (DARPA) and HHS’ BARDA.

The revolutionary breakthrough came to a Canadian scientist named Derek Rossi in 2010 purely by accident. The now-retired Harvard professor claimed in an interview with the National Post that he found a way to “reprogram” the molecules that carry the genetic instructions for cell development in the human body, not to mention all biological lifeforms.

Continue reading “A DARPA-Funded Implantable Biochip to Detect COVID-19 Could Hit Markets by 2021” »

Oct 4, 2020

New Method of 3D-Printing Soft Materials Could Jump-Start Creation of Tiny Medical Devices for the Body

Posted by in categories: 3D printing, biotech/medical

Researchers at the National Institute of Standards and Technology (NIST) have developed a new method of 3D-printing gels and other soft materials. Published in a new paper, it has the potential to create complex structures with nanometer-scale precision. Because many gels are compatible with living cells, the new method could jump-start the production of soft tiny medical devices such as drug delivery systems or flexible electrodes that can be inserted into the human body.

A standard 3D printer makes solid structures by creating sheets of material — typically plastic or rubber — and building them up layer by layer, like a lasagna, until the entire object is created.

Using a 3D printer to fabricate an object made of gel is a “bit more of a delicate cooking process,” said NIST researcher Andrei Kolmakov. In the standard method, the 3D printer chamber is filled with a soup of long-chain polymers — long groups of molecules bonded together — dissolved in water. Then “spices” are added — special molecules that are sensitive to light. When light from the 3D printer activates those special molecules, they stitch together the chains of polymers so that they form a fluffy weblike structure. This scaffolding, still surrounded by liquid water, is the gel.