Menu

Blog

Archive for the ‘bioengineering’ category: Page 72

Mar 16, 2022

Bacterial enzyme that copies DNA might make more mistakes in zero gravity

Posted by in categories: bioengineering, biotech/medical

(Inside Science) — An enzyme in the bacterium E. coli made more errors copying synthetic DNA when exposed to zero gravity than the same enzyme did in normal gravity, a recent study finds.

The paper raises the possibility that some enzymes work differently in space compared to on Earth. “It gives us an idea that enzymes, like polymerases or others that are involved in maintaining the integrity of our DNA, may be influenced by spaceflight,” said Susan Bailey, a radiation cancer biologist at Colorado State University in Fort Collins who has studied DNA damage caused by space radiation and did not contribute to the new paper.

Aaron Rosenstein, lead author of the paper and a bioengineering graduate student at the University of Toronto, said the finding “warrants further investigation into other enzymes that are involved in crucial pathways that are inherent to life and survival.”

Mar 16, 2022

A talk by David Pearce for the Stepping into the Future conference 2022

Posted by in categories: bioengineering, biotech/medical, evolution, health, neuroscience, transhumanism

Synopsis: No sentient being in the evolutionary history of life has enjoyed good health as defined by the World Health Organization. The founding constitution of the World Health Organization commits the international community to a daringly ambitious conception of health: “a state of complete physical, mental and social wellbeing”. Health as so conceived is inconsistent with evolution via natural selection. Lifelong good health is inconsistent with a Darwinian genome. Indeed, the vision of the World Health Organization evokes the World Transhumanist Association. Transhumanists aspire to a civilization of superhappiness, superlongevity and superintelligence; but even an architecture of mind based on information-sensitive gradients of bliss cannot yield complete well-being. Post-Darwinian life will be sublime, but “complete” well-being is posthuman – more akin to Buddhist nirvana. So the aim of this talk is twofold. First, I shall explore the therapeutic interventions needed to underwrite the WHO conception of good health for everyone – or rather, a recognisable approximation of lifelong good health. What genes, allelic combinations and metabolic pathways must be targeted to deliver a biohappiness revolution: life based entirely on gradients of well-being? How can we devise a more civilized signalling system for human and nonhuman animal life than gradients of mental and physical pain? Secondly, how can genome reformists shift the Overton window of political discourse in favour of hedonic uplift? How can prospective parents worldwide – and the World Health Organization – be encouraged to embrace genome reform? For only germline engineering can fix the problem of suffering and create a happy biosphere for all sentient beings.

https://www.scifuture.org/the-end-of-suffering-genome-reform…id-pearce/

Mar 13, 2022

New algorithm could help enable next-generation deep brain stimulation devices

Posted by in categories: bioengineering, biotech/medical, information science, neuroscience

Now, a developed by Brown University bioengineers could be an important step toward such adaptive DBS. The algorithm removes a key hurdle that makes it difficult for DBS systems to sense while simultaneously delivering .

“We know that there are in the associated with disease states, and we’d like to be able to record those signals and use them to adjust neuromodulation therapy automatically,” said David Borton, an assistant professor of biomedical engineering at Brown and corresponding author of a study describing the algorithm. “The problem is that stimulation creates electrical artifacts that corrupt the signals we’re trying to record. So we’ve developed a means of identifying and removing those artifacts, so all that’s left is the signal of interest from the brain.”

Mar 11, 2022

New study confirms bioengineered RSV protein vaccine evokes protective immune response

Posted by in categories: bioengineering, biotech/medical

Close interactions with infectious disease set both University of California, Santa Cruz graduate student Ana Nuñez Castrejon and Associate Professor of Biomolecular Engineering Rebecca DuBois on the path of studying respiratory syncytial virus (RSV), a common and sometimes dangerous respiratory disease for which there is not currently a vaccine. The two researchers recently marked a major milestone in their effort to create an effective vaccine for the virus with the publishing of their paper “Structure-based design and antigenic validation of respiratory syncytial virus G immunogens” in the Journal of Virology.

For fifth-year Baskin Engineering student and the paper’s lead author Nuñez Castrejon, a bout of pneumonia that lingered for months when she was an sparked her interest in studying respiratory illnesses. For DuBois, watching her child go through a serious infection of RSV, which can cause severe respiratory infections in infants/children and the elderly, led her to study the disease.

“We have all of these wonderful childhood vaccines that have eliminated so much childhood disease, but there are still a lot of infectious diseases that are really tough on children, and RSV is one of those that causes hospitalizations in children,” DuBois said.

Mar 11, 2022

Dr. Kara Spiller, PhD — Immunomodulatory Biomaterials In Regenerative Medicine — Drexel University

Posted by in categories: bioengineering, biotech/medical, education, life extension

Immunomodulatory Biomaterials In Regenerative Medicine — Dr. Kara Spiller-Geisler, Ph.D., Drexel University School of Biomedical Engineering, Science and Health Systems.


Dr. Kara Spiller, PhD (https://drexel.edu/biomed/faculty/core/SpillerKara/) is Associate Professor in the Biomaterials and Regenerative Medicine Laboratory at Drexel University, in Philadelphia.

Continue reading “Dr. Kara Spiller, PhD — Immunomodulatory Biomaterials In Regenerative Medicine — Drexel University” »

Mar 9, 2022

Stanford engineers develop computer that operates on water droplets

Posted by in categories: bioengineering, computing, physics

Circa 2015


Stanford bioengineer Manu Prakash and his students have developed a synchronous computer that operates using the unique physics of moving water droplets.

Continue reading “Stanford engineers develop computer that operates on water droplets” »

Mar 4, 2022

Protein tweak makes CRISPR gene editing 4,000 times less error-prone

Posted by in categories: bioengineering, biotech/medical, genetics, health

The CRISPR gene-editing system is a powerful tool that could revolutionize medicine and other sciences, but unfortunately it has a tendency to make edits to the wrong sections of DNA. Now, researchers at the University of Texas at Austin have identified a previously unknown structure of the protein that drives these mistakes, and tweaked it to reduce the likelihood of off-target mutations by 4,000 times.

CRISPR tools use certain proteins, most often Cas9, to make precise edits to specific DNA sequences in living cells. This can involve cutting out problematic genes, such as those that cause disease, and/or slotting in beneficial ones. The problem is that sometimes the tool can make changes to the wrong parts, potentially triggering a range of other health issues.

And in the new study, the UT researchers discovered how some of these errors can happen. Usually, the Cas9 protein is hunting for a specific sequence of 20 letters in the DNA code, but if it finds one where 18 out of 20 match its target, it might make its edit anyway. To find out why this occurs, the team used cryo-electron microscopy to observe what Cas9 is doing when it interacts with a mismatched sequence.

Mar 3, 2022

Comparative analysis of genome code complexity and manufacturability with engineering benchmarks

Posted by in categories: bioengineering, biotech/medical, encryption

When knowledge has advanced to a state that includes a predictive understanding of the relationship between genome sequence and organism phenotype it will be possible for future engineers to design and produce synthetic organisms. However, the possibility of synthetic biology does not necessarily guarantee its feasibility, in much the same way that the possibility of a brute force attack fails to ensure the timely breaking of robust encryption. The size and range of natural genomes, from a few million base pairs for bacteria to over 100 billion base pairs for some plants, suggests it is necessary to evaluate the practical limits of designing genomes of similar complexity.

Mar 2, 2022

Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge

Posted by in categories: bioengineering, biotech/medical, life extension, nanotechnology

The amniotic membrane (Amnio-M) has various applications in regenerative medicine. It acts as a highly biocompatible natural scaffold and as a source of several types of stem cells and potent growth factors. It also serves as an effective nano-reservoir for drug delivery, thanks to its high entrapment properties. Over the past century, the use of the Amnio-M in the clinic has evolved from a simple sheet for topical applications for skin and corneal repair into more advanced forms, such as micronized dehydrated membrane, amniotic cytokine extract, and solubilized powder injections to regenerate muscles, cartilage, and tendons. This review highlights the development of the Amnio-M over the years and the implication of new and emerging nanotechnology to support expanding its use for tissue engineering and clinical applications. Graphical Abstract.

Feb 25, 2022

3D micromesh-based hybrid printing for microtissue engineering

Posted by in categories: bioengineering, bioprinting, biotech/medical

Bioprinting is widely applicable to develop tissue engineering scaffolds and form tissue models in the lab. Materials scientists use this method to construct complex 3D structures based on different polymers and hydrogels; however, relatively low resolution and long fabrication times can result in limited procedures for cell-based applications.

In a new report now available in Nature Asia Materials, Byungjun Lee and a team of scientists in mechanical engineering at Seoul National University, Seoul, Korea, presented a 3D hybrid-micromesh assisted bioprinting method (Hy-MAP) to combine digital light projection, 3D printed micromesh scaffold sutures, together with sequential hydrogel patterning. The new method of bioprinting offered rapid cell co-culture via several methods including injection, dipping and draining. The work can promote the construction of mesoscale complex 3D hydrogel structures across 2D microfluidic channels to 3D channel networks.

Lee et al. established the design rules for Hy-MAP printing via analytical and experimental investigations. The new method can provide an alternative technique to develop mesoscale implantable tissue engineering constructs for organ-on-a-chip applications.

Page 72 of 218First6970717273747576Last