Menu

Blog

Archive for the ‘bioengineering’ category: Page 62

Aug 25, 2021

Discovery that TRPV4 gene regulates cartilage growth might yield future therapies for joint repair

Posted by in categories: bioengineering, biotech/medical

New information from a study reported in Stem Cells might result in more effective treatments for osteoarthritis and other cartilage diseases, as well as hereditary disorders affecting cartilage development. Their findings might also point to a new way to accelerate stem cell differentiation for bioengineering cartilage, the researchers say.

Aug 24, 2021

The Rise of Man: What Was Our Ultimate Success Formula As a Species?

Posted by in categories: bioengineering, biotech/medical, evolution, food, genetics, internet

What we’ll soon see is the ultimate self-directed evolution fueled forward by gene editing, genetic engineering, reproduction assisted technology, neuro-engineering, mind uploading and creation of artificial life. Our success as a technological species essentially created what might be called our species-specific “success formula.” We devised tools and instruments, created new methodologies and processes, and readjusted ecological niches to suit our needs. And our technology shaped us back by shaping our minds. In a very real sense, we have co-evolved with our technology. As an animal species among many other species competing for survival, this was our unique passage to success.

#TECHNOCULTURE : #TheRiseofMan #CyberneticTheoryofMind

Continue reading “The Rise of Man: What Was Our Ultimate Success Formula As a Species?” »

Aug 23, 2021

Gene Editing Used to Block Mosquitos’ Ability to Identify Targets

Posted by in categories: bioengineering, biotech/medical, food

Craig Montell is a professor at the University of California, Santa Barbara, who helped lead the research. He said in a statement that by removing the two eye receptors, the team was able to “eliminate CO2-induced target recognition without causing blindness.”


Female Aedes aegypti search out blood meals in humans to develop eggs. They use several different senses to find those meals. One of the main identifying tools is the smell of carbon dioxide (CO2). When a human breathes out CO2, the mosquitoes become more active and begin looking for targets to bite.

The research team said this search generally begins with the mosquito flying toward the direction of the released CO2. When seeking out targets, the insects search for dark objects. Once the mosquitoes are within close range, they can also sense heat from skin and additional skin smells to help guide them to a human.

Continue reading “Gene Editing Used to Block Mosquitos’ Ability to Identify Targets” »

Aug 20, 2021

Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology, neuroscience

I am pleased to announce that my lead-author review paper has been published in ACS Nano! If you are interested in learning about the convergence of synthetic biology and adenoviral gene therapy, I encourage you to check out my paper.

If you cannot access the full text, I have also posted a local copy at the following link: https://logancollinsblog.files.wordpress.com/2021/08/synthet…s-2021.pdf.

#ACS #ACSNano #SyntheticBiology #GeneTherapy #Biology #Biotech #Science #Biotechnology #Nanotechnology #Adenovirus #Engineering #Virology

Continue reading “Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies” »

Aug 20, 2021

Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our 3D-bioink platform and in orthotopic cancer mouse models as opposed to 2D culture on rigid plastic plates. Our 3D-bioprinted model could be the basis for potentially replacing cell cultures and animal models as a powerful platform for rapid, reproducible, and robust target discovery; personalized therapy screening; and drug development.

Cancer is the second leading cause of death globally. It is estimated that around 30 to 40% of patients with cancer are being treated with ineffective drugs ; therefore, preclinical drug screening platforms attempt to overcome this challenge. Several approaches, such as whole-exome or RNA sequencing (RNA-seq), aim to identify druggable, known mutations or overexpressed genes that may be exploited as a therapeutic target for personalized therapy. More advanced approaches offer to assess the efficacy of a drug or combinations of drugs in patient-derived tumor xenograft models or in vitro three-dimensional (3D) organoids. Unfortunately, most of the existing methods face unmet challenges, which limit their efficacy. For instance, cells can become quiescent or acquire somatic mutations while growing many generations on plastic under the influence of static mechanical forces and in the absence of functional vasculature.

Aug 17, 2021

CRISPR Development Makes Stem Cells “Invisible” to Immune System Without Immunosuppressants

Posted by in categories: bioengineering, biotech/medical, life extension

Quick vid and a reminder of the 4th conference of Lifespan.io is this weekend.


Gene editing can make stem cells invisible to the immune system, making it possible to carry out cell therapy transplants without suppressing the patients’ immune response. Scientists in the US and Germany used immune engineering to develop universal cell products that could be used in all transplant patients. The idea is to create stem cells that evade the immune system; these hypoimmune stem cells are then used to generate cells of the desired type that can be transplanted into any patient without the need for immunosuppression, since the cells won’t elicit an immune response. They used CRISPR-Cas9 to knock out two genes involved in the major histocompatibility complex, which is used for self/non-self discrimination. They also increased the expression of a protein that acts as a “don’t eat me” signal to protect cells from macrophages. Together, these changes made the stem cells look less foreign and avoid clearance by macrophages. The team then differentiated endothelial cells and cardiomyocytes from the engineered stem cells, and they used these to treat three different diseases in mice. Cell therapy treatments using the hypoimmune cells were effective in rescuing hindlimbs from vascular blockage, preventing lung damage in an engineered mouse model, and maintaining heart function following a myocardial infarction. Immunosuppression poses obvious risks to a patient, and generating custom cells for transplant therapy is often prohibitively expensive. The development of universal donor cells that can be used as therapeutics could bring the cost down significantly, making cellular therapeutics available to many more patients in a much safer way.

Continue reading “CRISPR Development Makes Stem Cells ‘Invisible’ to Immune System Without Immunosuppressants” »

Aug 16, 2021

CRISPR gene editing: The key benefits (and risks) of modifying our natural world

Posted by in categories: bioengineering, biotech/medical, genetics

What’s confusing is that some of the modifications we’re now considering could have been achieved years ago through traditional methods, so our views depend on what we think about the safety of new editing technologies, but also how desperate we are to address environmental degradation.


A process that began centuries ago with selective breeding has developed into genetic modification. We explore the consequences of these controversial tools.

Aug 15, 2021

UAT Virtual Let’s Talk Tech Open House

Posted by in categories: bioengineering, biological, genetics, information science, internet, robotics/AI

Learn More


University of Advancing Technology’s Artificial Intelligence (AI) degree explores the theory and practice of engineering tools that simulate thinking, patterning, and advanced decision behaviors by software systems. With inspiration derived from biology to design, UAT’s Artificial Intelligence program teaches students to build software systems that solve complex problems. Students will work with technologies including voice recognition, simulation agents, machine learning (ML), and the internet of things (IoT).

Students pursuing this specialized computer programming degree develop applications using evolutionary and genetic algorithms, cellular automata, artificial neural networks, agent-based models, and other artificial intelligence methodologies. UAT’s degree in AI covers the fundamentals of general and applied artificial intelligence including core programming languages and platforms used in computer science.

Continue reading “UAT Virtual Let’s Talk Tech Open House” »

Aug 10, 2021

Mutation-mapping tool could yield stronger COVID boosters, universal vaccines

Posted by in categories: bioengineering, biotech/medical, chemistry

Researchers at CU Boulder have developed a platform which can quickly identify common mutations on the SARS-CoV-2 virus that allow it to escape antibodies and infect cells.

Published today in Cell Reports, the research marks a major step toward successfully developing a universal vaccine for not only COVID-19, but also potentially for influenza, HIV and other deadly global viruses.

“We’ve developed a predictive tool that can tell you ahead of time which antibodies are going to be effective against circulating strains of virus,” said lead author Timothy Whitehead, associate professor of chemical and biological engineering. “But the implications for this technology are more profound: If you can predict what the variants will be in a given season, you could get vaccinated to match the sequence that will occur and short-circuit this seasonal variation.”

Continue reading “Mutation-mapping tool could yield stronger COVID boosters, universal vaccines” »

Aug 8, 2021

Is Gene Editing the Future of the Olympics?

Posted by in categories: bioengineering, biotech/medical

Gene editing: the future of the olympics or a looming crisis?


As the 2,020 Olympics come to a close, we’re reminded of elite athletes’ talent. But could science and gene editing make them perfect? What then?

Continue reading “Is Gene Editing the Future of the Olympics?” »

Page 62 of 196First5960616263646566Last