Menu

Blog

Archive for the ‘bioengineering’ category: Page 11

Aug 16, 2024

Interview: The Emerging Ethics of Innovative Brain Research

Posted by in categories: bioengineering, ethics, neuroscience

Nervous system disorders are among the leading causes of death and disability globally.


As brain research advances, how should study participants be protected? Bioethicist Saskia Hendriks has some ideas.

Aug 13, 2024

Prof. Dr. Alan Widgerow — Division Chief, Center for Tissue Engineering, UC Irvine / CSO, Galderma

Posted by in categories: bioengineering, biotech/medical, life extension

Innovation At The Frontiers Of Aesthetic And Regenerative Medicine — Prof. Dr. Alan Widgerow — Division Chief, Center for Tissue Engineering, UCIrvine — Chief Scientific Officer, Galderma.


Prof. Dr. Alan Widgerow, MBBCh, FCS, MMed, FACS, is Division Chief, Research, Center for Tissue Engineering (https://sites.uci.edu/ctelab/team/) and Adjunct Professor Plastic Surgery, Dept of Plastic Surgery, University of California, Irvine (https://faculty.uci.edu/profile/?facu…) and Chief Scientific Officer and Head of Skin Science Center of Innovation at Galderma (https://www.galderma.com/).

Continue reading “Prof. Dr. Alan Widgerow — Division Chief, Center for Tissue Engineering, UC Irvine / CSO, Galderma” »

Aug 12, 2024

Plastic-free vegan leather that dyes itself grown from bacteria

Posted by in categories: bioengineering, biological, chemistry, sustainability

Inventing a new, faster way to produce sustainable, self-dyed leather alternatives is a major achievement for synthetic biology and sustainable fashion. Professor Tom Ellis

Synthetic chemical dyeing is one of the most environmentally toxic processes in fashion, and black dyes – especially those used in colouring leather – are particularly harmful. The researchers at Imperial set out to use biology to solve this.

Aug 12, 2024

Strengthening Earthquake Hazard Models and Protecting Human Life

Posted by in category: bioengineering

What can earthquake rupture zones teach us about earthquakes and how to predict them? This is what a five-year, $2.3 million grant awarded by the National Science Foundation’s (NSF) Frontier Research in Earth Sciences grant hopes to address as an international team of researchers have been tasked with analyzing samples obtained from the earthquake rupture zone at the Turkey-Syria border responsible for the devastating back-to-back earthquakes on February 6, 2023, that killed more than 50,000 people and registered 7.8-magnitude and 7.6-magnitude, respectively. This study holds the potential to help researchers better understand the geologic processes responsible for large-scale earthquakes and the steps we can take to mitigate damage and loss of life.

“This NSF-funded project will help us overcome limitations of previous, generalized characterizations of earthquake critical zones with more in-depth geologic data, seismic imaging studies, deformation experiments and modeling,” said Dr. Alexis Ault, who is an Associate Professor in the Department of Geosciences at Utah State University (USU), and the lead principal investigator on the project. “Combining expertise from varied engineering and geoscience disciplines, we aim to emerge with a more complete and accurate picture of earthquake critical zones in these settings.”

For the study, the researchers collected geologic samples from the Çardak-Yesilyurt Fault system that was responsible for the devastating 2023 quakes to better understand how pressure builds within the earthquake critical zone, or the region of the Earth’s crust that’s just beneath the surface. Additionally, they will compare these findings to samples obtained from the southern San Andreas fault in California from another grant to help build their data cache, as well. This research builds off a 2023 NSF-funded research trip to the region approximately six months after the devastating quakes occurred.

Aug 9, 2024

These Living Computers Are Made from Human Neurons

Posted by in categories: bioengineering, biological, internet, robotics/AI

In the search for less energy-hungry artificial intelligence, some scientists are exploring living computers.

By Jordan Kinard

Artificial intelligence systems, even those as sophisticated as ChatGPT, depend on the same silicon-based hardware that has been the bedrock of computing since the 1950s. But what if computers could be molded from living biological matter? Some researchers in academia and the commercial sector, wary of AI’s ballooning demands for data storage and energy, are focusing on a growing field known as biocomputing. This approach uses synthetic biology, such as miniature clusters of lab-grown cells called organoids, to create computer architecture. Biocomputing pioneers include Swiss company FinalSpark, which earlier this year debuted its “Neuroplatform”—a computer platform powered by human-brain organoids—that scientists can rent over the Internet for $500 a month.

Aug 9, 2024

A controversial Chinese CRISPR scientist is still hopeful about embryo gene editing. Here’s why

Posted by in categories: bioengineering, biotech/medical, genetics, law enforcement

He Jiankui, who went to prison for three years for making the world’s first gene-edited babies, talked to MIT Technology Review about his new research plans.

Aug 8, 2024

CRISPRi-based circuits to control gene expression in plants

Posted by in categories: bioengineering, biotech/medical, genetics

Programmable and reversible CRISPRi-based genetic circuits function in a variety of plants.

Aug 6, 2024

New X-ray world record: Looking inside a microchip with 4 nanometer precision

Posted by in categories: bioengineering, computing

In a collaboration with EPFL Lausanne, ETH Zurich and the University of Southern California researchers at the Paul Scherrer Institute PSI have used X-rays to look inside a microchip with higher precision than ever before. The image resolution of 4 nanometers marks a new world record. The high-resolution three-dimensional images of the type they produced will enable advances in both information technology and the life sciences.

The researchers are reporting their findings in the current issue of the journal Nature (“High-performance 4 nm resolution X-ray tomography using burst ptychography”).

View inside a state-of-the-art computer chip. Their newly developed ptychographic technique allowed the researchers to map the three-dimensional structure of this engineering marvel. The picture shows the different layers that make up the microchip. The coarser structures can be seen at the top. The microchip becomes increasingly complex as you move down through the layers – making the connections there visible requires a resolution of just a few nanometers. (Image: Tomas Aidukas, Paul Scherrer Institute)

Aug 3, 2024

A frugal CRISPR kit for equitable and accessible education in gene editing and synthetic biology

Posted by in categories: bioengineering, biotech/medical, education, information science

Equitable and accessible education in life sciences, bioengineering, and synthetic biology is crucial for training the next generation of scientists. Here the authors present the CRISPRkit, a cost-effective educational tool that enables high school students to perform CRISPR experiments affordably and safely without prior experience, using smartphone-based quantification and an automated algorithm for data analysis.

Jul 30, 2024

Scientists ‘Mind Controlled’ Mice Remotely in Extraordinary World First

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology, neuroscience

At the mere flick of a magnetic field, mice engineered with nanoparticle-activated ‘switches’ inside their brains were driven to feed, socialize, and act like clucky new mothers in an experiment designed to test an innovative research tool.

While ’mind control’ animal experiments are far from new, they have generally relied on cumbersome electrodes tethering the subject to an external system, which not only requires invasive surgery but also sets limits on how freely the test subject can move about.

In what is claimed to be a breakthrough in neurology, researchers from the Institute for Basic Science (IBS) in Korea have developed a method for targeting pathways in the brain using a combination of genetics, nanoparticles, and magnetic fields.

Page 11 of 222First89101112131415Last