Menu

Blog

Archive for the ‘biotech/medical’ category: Page 840

May 28, 2022

COVID-19 in 2022—The Beginning of the End or the End of the Beginning?

Posted by in categories: biotech/medical, computing, neuroscience, singularity

Jesper AndersonNo. Nobody can “leave their body”. There is no evidence what so ever that this is possible.

What can be done is, copy many of your attributes and create a copy which behaves very much like you. But that’s simply an advanced method of writing a book. I… See more.

Craig Everett JonesAlthough neurons are much like transistors, our emotions are not just ones and zeroes. We feel things in our gut. I think singularity fans are grossly underestimating the dependencies between human consciousness and organic physiology. And, your b… See more.

Continue reading “COVID-19 in 2022—The Beginning of the End or the End of the Beginning?” »

May 28, 2022

Making stem cells with chemicals

Posted by in categories: biotech/medical, chemistry, education, life extension

Reprogramming without having to insert genes.


When people think of cellular reprogramming, converting a differentiated cell into a stem cell, they often refer to the overexpression of Yamanaka factors[Oct4, Klf4, Sox2 & c-Myc]. Rightly so. But what if i told you that stem cells could be induced with just chemicals. Well you would reply “show me the data”. So, let’s take a look at this recent Nature paper that showed how combinations of small molecules/chemicals converted human differentiated cells to stem cells.

Continue reading “Making stem cells with chemicals” »

May 28, 2022

New vaccine type overcomes cancerous tumor defenses

Posted by in category: biotech/medical

A team of researchers affiliated with multiple institutions in the U.S. and one in Japan has developed a new type of vaccine that helps the immune system destroy cancerous tumors by overcoming their defense system. In their paper published in the journal Nature, the group describes the new vaccine and its effects in mouse and rhesus macaque models.

Until recently, the only tools available to doctors treating have been chemotherapy, radiation treatment and surgery. More recently, have been exploring vaccines in the fight against cancer—the development of a vaccine against HPV-related diseases, for example, has reduced the risks of cervical and other types of cancers. Other research efforts have involved targeting peptide antigens and have proven to be effective, but only in limited circumstances. In this new effort, the researchers developed a more generalized vaccine that they believe can be used against multiple types of cancers in many types of cancer patients.

The new vaccine works by taking away one of the major defense strategies used by tumors, which is the ability to cleave T cells and from their surfaces. Such cells are deployed when the body detects a growing tumor and alerts the . By shedding them after they affix themselves to MICA and MICB proteins on their surface, tumors are free to grow. The new vaccine works by interceding in the cleaving process, preventing the tumor from shedding the immune cells sent to kill it. The vaccine disrupts this cleaving process by increasing the density of proteins on the surface of tumor cells, which the researchers describe as “inciting protective immunity.”

May 28, 2022

Researchers create digital humans that learn complex movements

Posted by in categories: biotech/medical, cyborgs, health, robotics/AI

Researchers at Meta’s Artificial Intelligence Research Lab (Facebook) in the U.S. and at the University of Twente’s Neuromechanical Modelling and Engineering Lab in the Netherlands (led by Prof.dr.ir Massimo Sartori), have co-developed the open-source framework MyoSuite, which combines advanced musculoskeletal models with advanced artificial intelligence (AI). The AI-powered digital models in MyoSuite can learn to execute complex movements and interactions with assistive robots, that would otherwise require long experimentations on real human subjects.

Modeling and simulation are now as important to human health technologies as they have been for the advancement of modern automotive industry. Prof. Massimo Sartori: “If we could predict the outcome of a robotic therapy beforehand, then we could optimize it for a patient and deliver a truly personalized and cost-effective treatment.”

MyoSuite supports the co-simulation of AI-powered musculoskeletal systems physically interacting with such as exoskeletons. With MyoSuite you can simulate biological phenomena, e.g., muscle fatigue, muscle sarcopenia, tendon tear and tendon reaffirmation. Moreover, you can simulate how assistive robots could be designed and controlled to restore movement following impairment.

May 27, 2022

Magnetic resonance imaging shows brain inflammation in vivo for the first time

Posted by in categories: biotech/medical, mathematics, neuroscience

Research by Dr. Silvia de Santis and Dr. Santiago Canals, both from the Institute of Neurosciences UMH-CSIC (Alicante, Spain), has made it possible to visualize for the first time and in great detail brain inflammation using diffusion-weighted Magnetic Resonance Imaging. This detailed “X-ray” of inflammation cannot be obtained with conventional MRI, but requires data acquisition sequences and special mathematical models. Once the method was developed, the researchers were able to quantify the alterations in the morphology of the different cell populations involved in the inflammatory process in the brain.

An innovative strategy developed by the researchers has made possible this important breakthrough, which is published today in the journal Science Advances and which may be crucial to change the course of the study and treatment of neurodegenerative diseases.

The research demonstrates that diffusion-weighted MRI can noninvasively and differentially detect the activation of microglia and astrocytes, two types of cells that are at the basis of neuroinflammation and its progression.

May 27, 2022

‘Brain-on-a-Chip’ Technology Advances Toward a New Form of Drug Screening

Posted by in categories: biotech/medical, neuroscience

The Stem Cell Reports paper demonstrated the capability to grow and differentiate cortical neurons — known to be responsible for a majority of higher brain function — into fully mature and functional cells.

These neurons were then incorporated into a circuit functioning as a simulated system, where the researchers were able to induce long-term potentiation (LTP). LTP — which allows for memory formation — is a key phenomenon in the study of cognition, and one that has mostly evaded direct observation in human models.


A UCF researcher’s work to create a “brain-on-a-chip” aims to improve neurological disorder research by speeding up drug discovery and providing an alternative to animal testing.

Continue reading “‘Brain-on-a-Chip’ Technology Advances Toward a New Form of Drug Screening” »

May 27, 2022

Elon Musk Speculates About Storing All Human DNA in Database

Posted by in categories: biotech/medical, computing, Elon Musk

In the early 2000s, scientists from the Human Genome Project announced a breakthrough: they had sequenced the complete human reference genome, including all three billion DNA letter, a scientific undertaking likened at the time to landing astronauts on the Moon.

While the reference genome has come under question as of late, with scientists adding more than two million additional variants, it still doesn’t take a whole lot of space to store the entire sequence on a traditional computer.

And now, Tesla and SpaceX CEO Elon Musk is once again weighing in on an issue outside his expertise, arguing that one could “fit the DNA sequences of all humans alive today in a fairly small data storage system” — a vaguely terrifying thought coming from the richest man in the world, as if he didn’t already have enough fires to put out and problems to solve.

May 27, 2022

AI reskilling: A solution to the worker crisis

Posted by in categories: biotech/medical, business, employment, finance, information science, robotics/AI

By 2025, the World Economic Forum estimates that 97 million new jobs may emerge as artificial intelligence (AI) changes the nature of work and influences the new division of labor between humans, machines and algorithms. Specifically in banking, a recent McKinsey survey found that AI technologies could deliver up to $1 trillion of additional value each year. AI is continuing its steady rise and starting to have a sweeping impact on the financial services industry, but its potential is still far from fully realized.

The transformative power of AI is already impacting a range of functions in financial services including risk management, personalization, fraud detection and ESG analytics. The problem is that advances in AI are slowed down by a global shortage of workers with the skills and experience in areas such as deep learning, natural language processing and robotic process automation. So with AI technology opening new opportunities, financial services workers are eager to gain the skills they need in order to leverage AI tools and advance their careers.

Today, 87% of employees consider retraining and upskilling options at workplaces very important, and at the same time, more companies ranked upskilling their workforce as a top-5 business priority now than pre-pandemic. Companies that don’t focus on powering AI training will fall behind in a tight hiring market. Below are some key takeaways for business leaders looking to prioritize reskilling efforts at their organization.

May 27, 2022

Existing drug aids stroke recovery

Posted by in categories: biotech/medical, neuroscience

Most treatments for strokes aim to help reduce or repair damage to affected neurons. But a new study in mice has shown that a drug already in use to treat certain neurological disorders could help patients recover from strokes by getting undamaged neurons to pick up the slack.

An ischemic stroke occurs when a blood vessel blockage interrupts blood flow to the brain, causing neurons to die off. Survivors can suffer impaired fine motor control and speech, and other disabilities, for which long-term rehabilitation is often required.

Logically, many treatment options in development focus on minimizing or reversing damage to neurons, using things like stem cells, anti-inflammatory drugs, injectable hydrogels, or molecules that convert neighboring cells into neurons.

May 26, 2022

Scientists grow cells on a robot skeleton (but don’t know what to do with them yet)

Posted by in categories: biotech/medical, robotics/AI

If you want to grow human cells, try to approximate a human body.


Scientist have grown human cells on a robot skeleton, hoping that by moving the skeleton they can better approximate the cells’ natural growing environment. The cells certainly grew, but it’s not clear yet if they would be any better for medical treatments.

Page 840 of 2,560First837838839840841842843844Last